ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Local Illumination in Deformed Space

Fabrice Neyret

N° 2856
Avril 1995

THEME 3

apport
de recherche

ZIINRIA

ROCQUENCOURT

Local Illumination in Deformed Space

*
Fabrice Neyret

Théme 3 — Interaction homme-machine,
images, données, connaissances
Projet Syntim

Rapport de recherche n° 2856 — Avril 1995 — 12 pages

Abstract: There are two ways of ray-tracing space-deformed objects: computing the
resulting object and rendering it, or directly rendering the object in its initial space by
curving rays. This last approach is advantageous for all non-explicit representations that
often should otherwise be facetized (CSG, implicit functions), or for large databases for
which too many components should be transformed (particle systems, volumes, complex
geometry).

We deal here with ray casting in a structured space (voxels, complex geometry in volu-
metric textures, geometry in grids), focusing on the local illumination evaluation, especially
in the anisotropic case. We apply it to the ellipsoidal reflectance model developed for volu-
metric textures in [Ney95].

Key-words: volumetric textures, space deformation, complex geometry

(Résumé : tsvp)

* Fabrice.Neyret@inria.fr http://www-rocq.inria.fr/syntim/research/neyret

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : (33 1) 39 63 55 11 — Télécopie : (33 1) 39 63 53 30

Illumination locale en Espace Courbe

Résumé : Il existe deux facons de calculer en lancer de rayon le rendu d’objets ayant subit
une déformation spatiale: en construisant ’objet résultant avant d’en calculer le rendu, ou
en rendant directement I’objet dans son espace propre et en courbant les rayons. Cette der-
niere approche est avantageuse pour toutes les représentations non-explicites qui devraient
autrement étre facetisées (CSG, fonctions implicites), ou pour les grosses bases de données
pour lesquelles il faudrait transformer trop de composantes (systémes de particules, volumes,
géométrie complexe).

Nous traitons ici du lancer de rayon en espace structuré (voxels, géométrie complexe
en texture volumique, géométrie triée en grille), en se concentrant sur I’évaluation de
I'illumination locale, en particulier dans le cas de I’anisotropie. Nous ’appliquons au modele
de réflectance ellipsoidal développé pour les textures volumiques dans [Ney95].

Mots-clé : textures volumiques, déformation spatiale, géométrie complexe

Local Ilumination in Deformed Space 3

1 Introduction

Space deformation methods are used to model objets by deforming simple ones [SP86,
Bec94], or to deform objects along the time [CJ91]. This is generaly done by transforming
vertices for facets or control points for patches (patches can also be directly transformed
into higher degree patches). So, this is not well adapted to other representations, often
used in ray-tracing, such as CSG or implicit functions (however, these representations can
be facetized). Furthermore, even with facets, some problems occur with high deformations,
because transformed facets stay facets (nevertheless, some methods are able to subdivise the
facets during the deformation). Moreover, this can be costly for huge representations, such
as volumetric data, particle systems or complex repetitive geometry, for which the number
of components can be higher than the number of visible pixels. And finally, reflectance
specifications (bump mapping, anisotropy) are bypassed, as normals are recomputed from
the resulting geometry.

A solution is to avoid effective geometric transformation, by transforming rays rather
than space, thus doing the rendering in the initial object space. Alas, we have not found
any implementation, as far as solving the geometry-ray intersection with non-linear rays
is not easy. When data are structured in space (volume in voxels) or can be structured
(e.g. with a grid which sorts the facets), the ray can be followed step by step as line
drawing algorithms do in pixels. Concerning hudge databases, one has to note that complex
repetitives geometries are still often hierarchized or sorted with grids, which are used for a
long time to optimize ray-tracing, or can also be represented by volumetric textures. We
propose in section 2 a simple ray-casting method for such a structured space, the general
case being very difficult.

In section 3, we focus on the problem of local illumination, first with the Phong
model, then with anisotropy. It is difficult to specify what can happen to a full BDRF
(bi-directional reflectance function) after the deformation of an underlying surface when
anisotropy is not caused by micro-geometry. Otherwise, the deformation of this micro-
geometry can be computed. When caused by micro-geometry, BDRF can be represented
by normals repartition function, or by a shape producing this normal distribution, acting
like ‘crystallization’. Thus, we supposed to have such a representation to encode the local
reflectance [PF90, CMS87, Fou92].

In section 4, we apply these considerations to volumetric textures rendering: this method,
introduced by Kajiya in [KK89], is extending in [Ney95] to the scope of repetitive complex
geometry modeling, on a multiscale way which prevents aliasing and decreases cost. A
volumetric sample stores a density and a local reflectance in voxels, structured in octree.
The repeated and deformed copies, called tezels, which are mapped on a surface, are thus
a space deformation of the reference volume. In this section, we focus on the reflectance
computation in the deformed space, with an ellipsoidal reflectance model.

RR n° 2856

4 Fabrice Neyret

2 Curved Rays

A space deformation T transforms a point M, into M, = T'(M,), the ‘o’ and ‘s’ subscripts
refering to the object space and to the scene space. The opposite transformation is generally
difficult to obtain explicitly (e.g. inverse tricubic patch). A bounding box can be defined
around the object and deformed at the same time, so that the transformation just need to
be bijective inside this box, in order to be compatible with rendering in object space. Such a
rendering is done by intersecting the deformed bounding box, converting these intersection
points in the object space, then achieving the rendering with curved rays in the object space.
We outline in this section how to ray-cast with curved rays.

The Jacobian matrix Jr of the direct transformation can be computed at any point, and
the Jacobian Jp-1 of the reverse transformation is the inverse of the former matrix. A vector
V, at the point M, is transformed by T into V, = Jp(M,).V,. The curved ray expression
is hard to get and to use, while the intersections of the undeformed ray with the deformed
faces of the bounding box is easier to get (it is a problem of intersection between straight
rays and surfaces, see [Kaj82]), and motion along the ray can be done using the Jacobian.
This suggests Newton-like numerical schemes to intersect the geometry, but one can predict
an important cost added to the usual intersection cost. We propose here a simple numerical
scheme adapted to structured space.

A first problem is to reverse the transformation 7', i.e. to find M, knowing M,
(respectively noted U and X in the following pseudo-code). Using the approximation
T~YM+dM) ~ T~ (M)+J5'(M)dM then iterating gives a simple algorithm for invT(M):

U= (.5 .5 .5)

loop
X0 = T(U)
dX = X-X0

if |dX|<eps then exit
inv] = inv(J(U))

dU = invJ.dX

U = U+dU

S e e -

object space
scene space

INRIA

Local Ilumination in Deformed Space 5

The problem is now to cross the object space and to intersect the geometry. In structured
space, the ray crosses cells where data is stored. A line drawing like method consists in
parsing the cells, by finding the intersection between the ray and the grid which separates
cells. This leads to the problem of determining the intersection between the ray and a slice
parallel to an axis direction, defined by the index ¢ of its constant component, and by the
value ¢ of this component. The ray is defined by the origin X0 and the direction D.

This gives the algorithm reach_slice(i,¢,X0,D):

X = X0

loop
U = invT(X)
if |U[i]l-c|<eps then exit
invJ = inv(J(U))

dU = invJ.D

d = (c-U[i]1)/dU[i] ’ or 1 if 4U[i]=0
X = X+d4.D

U = U+d.dU

An improvement consists in initializing U=(.5 .5 .5) at the beginning of reach_slice, then
not to initialize U in snvT. Thus, the starting point is the last computed U, which improves
the convergence rate. This can also be done for reach_slice initialisation, to keep the ray
coherence. Another improvement is not to re-evaluate (and to inverse) J in invT, using
the last value computed in reach_slice. To save the number of slice intersections, one can
use hierarchical space structuration, in order to subdivide the space only where there is
material, and to quickly cross empty areas. A simple one is octree representation [Sam90],
which allowes to use rough cells in empty areas and to split them recursively in filled ones.

Convergence has to be guaranteed, at least by clipping U to keep it in the object bounding
box. The complete algorithm which tracks successive grid intersections is a little more
complicated than for line drawing. To go from a grid intersection to the next one along the
ray, the problem is to choose the next slice to reach. An estimation can be got by assuming
the ray to be straight inside a cell: if the step size between slices is 1, the current point is U,
and the ray direction is Du = invJ.D, then the distances between U and the intersections of
the straight ray with the bounding slices is given by £ TZCI(L?") and 1_f£ac_(U‘). The smallest
positive one gives an estimation of the real intersection péint, and of the slice direction to
use.

3 Local Illumination

After having reached a point on an object, the local illumination computation cannot
be done in the object coordinate system instead of the scene coordinate system without
modifications: illumination uses normal information, but the transformation of a normal
vector N, of the objet on a point M, is no longer normal to the deformed object:

RR n° 2856

6 Fabrice Neyret

normaly(opj)(T(M,)) # Jr.normal,y;(M,). Consequently, the Phong illumination model
which uses dot products between the local normal and vectors d and L in the scene space
cannot be evaluated directly in the object space, using the local normal obtained in this
space and transforming the other vectors. To compute the Phong model from object space
data, one has either to deform the neightbourhood of M, and re-evaluate the normal, either
to modify the dot product so that it gives the same result as the canonical dot product
in the scene space. Then the Phong model can be evaluated. Anisotropic reflectance will
be evaluated as well after having dealt with the same problem for the normals repartition
function integration.

d
ray
. i ray L
N _—>
N shade-ray shalde-ray
J —l(M) v
v - U
x W
Z
scene space texture space

Let < vy, vy > the canonical dot product of v; and vy, and ||v|| the Euclidian norm of v.
Given a vector V, and the normal N, on M, in the object space, we have
< N,,V, >=< N,,J ']V, >=< J~'".N,,V, >. This gives the normal in scene space !
N! = J7U.N,/||J7®%.N,||. So < N!,V, >=< N,/||[J71*.N,||,V, > where N, and N are
the normal of the object before and after the deformation, which defines the modified dot
product < N,,V, >7. An other way to say the same thing is to convert the local normal
N, into N! instead of J.N, before doing the canonical dot product of N and a vector V' in
the scene space.

The Phong local illumination model 2 Cyisr < N, L > +Cypee(< N, H >)" at a point
M is now obtained from the visibility expressions visq =< N,d > and vis;, =< N,L >
related to light and observer directions L and d, the dot product being the canonical or the
modified one depending on the space where normal N is taken:

Illu = Cyifp.visL(N).1(vis>0) —}—Cspgc.(%)r.lwwo) (the function 1(.,nqy value
1 if cond is true, else 0).

11f V,, is on the tangent plane in the object space, so that < N,,V, >= 0, then V, = J.V, is on the
tangent plane in the scene space. As < J~1*.N,, Vs >=< N,,V, >= 0, J-'*.N, is orthogonal to Vs, being
thus the normal in the scene space.

2 = ﬁ_ r is the inverse of roughness. Cg;ff and Cspec are the diffuse and specular reflection

coefficient.

INRIA

Local Ilumination in Deformed Space 7

For anisotropic reflectance, the local illumination at a point according to the given normal

repartion function A is evaluated by integrating the local Phong model on the normal
o] f Phong(N,d,L).visa(N).1(yis>0)-N(N)
distribution on the Gaussian sphere: Illuy = ~%e2s -
fg s Uzsd(N).l(m-s>0) N(N)

A normal is associated to a surface element ds having an apparent surface ds.visq or 0 if the
normal is not towards the observer, and has a distribution A/(N), all this weightening the
local Phong reflectance. The integral is normalized so that the underlying apparent surface
is 1.

normal distribution shape supporting

the normal distribution hape

Whe assume that N is defined by a shape, the normal distribution being the normals of
the shape which thus define a kind of ‘crystallization’. Then illumination can be written
Phong(N(M),d,L).visa(N(M)).1(yis>0)-dS

Sonape 73N (M) 11050045
This integral can be written directly on the apparent 2D surface:
Phong(N(Ms 4),d,L).ds

f ds ’
2Dsurf

which can be approximated by 1/n. %" Phong(N(M(,,,),d, L)

i = J:

Ty = fZDs'u.rf

The anisotropic illumination computation scheme is thus:
e evaluating the apparent surface of the shape modeling the reflectance,
e at each sample on this surface, calculating N on the shape

e evaluating wvisg, visg, in object or scene space, which gives the Phong illumination,
that is cumulated to finally gives Illu.

RR n° 2856

8 Fabrice Neyret

4 Ellipsoidal Reflectance

The reflectance model we described in [Ney95] encodes the normal repartion function A" by
an ellipsoid stored in voxels in the reference space, in addition to a density. This model is
compact, but generic enough in the scope of volumetric textures, where it encodes sub-voxel
geometric variations.

The initial space is deformed by the transformation 7" into the scene space. Assuming
linear deformation at voxel size around the voxel center O, (the local deformation being
determined by the Jacobian Jr(O.)), the reflectance can still be encoded by an ellipsoid
in the scene space. So to compute the illumination, we chose to convert the local ellipsoid
defined in the initial space, into the scene space. The problem is thus to evaluate the
resulting ellipsoid in order to get its normals, and the apparent ellipse to be sampled. In
the case of volumetric textures, the ‘crystallization’ also encodes the anisotropic occlusion
(a voxel is not a surface element), so that an additional normalisation has to be done.

An ellipsoid is characterized by a basis R and three length r;, so the associated quadratic
form M!.Q.M, =1is Q = R'.D~2.R in the initial space, with D diagonal such as D; ; = r;,
R normal, and M, a point on the ellipsoid (the origin being the ellipsoid center).

Converting the ellipsoid in the scene space is equivalent to back-convert a point M on
the resulting ellipsoid into the initial space:

M!.Q.M, =1 (with Q positive) < [|[D™L.R.Jp-1.M,||=1— Q = JL_, .R".D 2. R.Jp—

According to the previous section, we have to find the apparent shape, and the normal
corresponding to a point sampled on this surface. The apparent ellipse is the projection of
the ellipsoid following the observer direction d. Its quadratic form is Q' = Q — Qdd'Q/d'Qd.
Eigenvalues (I, h) and eigenvectors determine a bounding box of the ellipse. Given (z,y) on
the apparent ellipse surface, z so that (z,y,z) = M is on the ellipsoid is obtained from the
second order equation
22.d'Qd + 2z.(x.d'Ql + y.d'Qh) + (z.1'Ql + y2.h'Qh + 2zy.A'Ql — 1) = 0
z(-z,-y) can be obtained at the same time, so half of the ellipse need to be sampled. All the
terms v} Qus are of course pre-computed.

A normal to the ellipsoid at M can them be obtained by N = %, which gives the
illumination on this point according to the Phong model. @M can be directly extracted
by z.Ql + y.Qh + z.Qd, avoiding matrix product. The illumination computation scheme
detailled in the previous section can then be evaluated.

An additional normalisation has to be done in the scope of volumetric textures, in order
to treat with the same weight the different shapes, which also encode anisotropic occultation.
This normalisation is given by the mean apparent surface of the ellipsoid. We approximate
it by using the apparent surface in the three axis directions:

Smoy ~ w/3.(riry + rorg + rir3). With K = J:_, .R'*.D™'.R.Jp-1 , which has eigenvalues
1/r; when Jp = Id, Smoy ~ 7/3.|trace(K)/det(K)| (exact only if the deformation is a rigid
motion).

INRIA

Local Ilumination in Deformed Space 9

5 Results

The figure shows a texel of volumetric texture before and after the trilinear distortion.
The floor is slightly anisotropic. One can see on the sphere that the transformation of
the illumination effects (specular, diffuse and shadows) do not simply follow the geometric
deformation as a texture would do. The cube is here to illustrate CSG (although CSG and
implicit constructions are voxelized, using volumetric textures representation).

6 Conclusion

We have proposed a guideline to ray-trace space-deformed objects in their initial space, which
improves computation in the case of huge databases, and allows non-explicit representations
often used in ray-tracing.

The reflectance computation in the simple and anisotropic cases has been presented. A
simple anisotropic reflectance model, usable for volumetric textures, has been described.

A simple curved ray casting has also been proposed for structured space. It has to be
fully described in the general case.

RR n° 2856

10 Fabrice Neyret

References

[Bec94] D. Bechmann. Space deformation models survey. Computers & Graphics, 18(4):571-586, 1994.

[CJ91] Sabine Coquillart and Pierre Janceéne. Animated free-form deformation: An interactive animation
technique. In Thomas W. Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings),
volume 25, pages 23-26, July 1991.

[CMS87] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional reflection functions from
surface bump maps. In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH 87
Proceedings), volume 21(4), pages 273-281, July 1987.

[Fou92] Alain Fournier. Normal distribution functions and multiple surfaces. In Graphics Interface ’92
Workshop on Local Illumination, pages 45-52, May 1992.

[Kaj82] James T. Kajiya. Ray tracing parametric patches. In Computer Graphics (SIGGRAPH ’82
Proceedings), volume 16(3), pages 245-254, July 1982.

[KK89] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional textures. In Jeffrey
Lane, editor, Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 271-280,
July 1989.

[Ney95] Fabrice Neyret. A general and multiscale method for volumetric textures. In Graphics Interface’95
Proceedings, volume 00(0), pages 000-000, May 1995.

[PF90] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. In Forest Baskett, editor,
Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24(4), pages 273-282, August 1990.

[Sam90] Hanan Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
Massachusetts, 1990.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric models. In

David C. Evans and Russell J. Athay, editors, Computer Graphics (SIGGRAPH ’86 Proceedings),
volume 20, pages 151-160, August 1986.

INRIA

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

