
Synthesizing Verdant Landscapes
using Volumetric Textures

Fabrice Neyret

INRIA Rocquencourt
BP 105, 78153 Le Chesnay Cedex, FRANCE

Fabrice.Neyret@inria.fr http://www-rocq.inria.fr/syntim/research/neyret

Abstract: Volumetric textures are able to represent complex repetitive data such
as foliage, fur and forests by storing one sample of geometry in a volumetric texel
to be mapped onto a surface. This volume consists in samples of densities and
reflectances stored in voxels. The texel can be prefiltered similarly to the mip-
mapping algorithm, giving an efficient rendering in ray-tracing with low aliasing,
using a single ray per pixel.
Our general purpose is to extend the volumetric texture method in order to provide
a convenient and efficient tool for modeling, animating and rendering highly
complex scenes in ray-tracing. In this paper, we show how to convert usual 3D
models into texels, and how to render texels mapped onto any mesh type. We
illustrate our method with verdant landscapes such as forests and lawns.

1 Introduction

Geometric complexity is an important aspect of realism in synthetic scenes. This is
particularly true for natural scenes such as forests, lawns, fur, etc. In order to represent
and render scenes, one has to choose between using a general synthesis process
(consisting of interactively modeling meshes, specifying the animation, and launching
a renderer), and using a data-specific tool for either the modeling stage or eventually
the whole synthesis process. In this paper, we show that for complex scenes, volumetric
textures are a good trade off between generality and efficiency.

Classical synthesis process
It is convenient to use general tools and representations, since many products are
available and existing data can be re-used. The high geometric complexity makes this
theoretical solution usually impractical in each of its stages :� modeling requires a lot of detailed knowledge from the user, and is very repetitive.� the generated database is highly memory-consuming.� similarly, the animation needs the user to specify the motion of many components.� the rendering has to deal with billions of facets, which is costly in time and results

in a lot of aliasing.
Although clever optimisations and database structurations exist [FvDFH90], antialiased
ray-tracing of such scenes is still very slow. An important aspect lies in the determination
of levels of details, which is currently an active research topic. Scanline-renderers with
shadow capabilities can also be used, but one has to deal with aliasing, and detailed
shadows can hardly be obtained with a wide scene containing fine details.

Specific approaches
These approaches solve the problem for particular kinds of scenes, either by procedurally
describing the objects, or by providing a specific representation and the mean to
render it. The first category concerns L-systems, fractals, botanical and physical models

[Pa88, dRa88, FR86] which generate polygons. The second category mostly concerns
particle systems and some landscape-specialized models [RB85, WP95]. which use
specific representations and rendering techniques. Procedural geometric models do not
address the rendering aspect of the problem, and specific representations forbid the use
of general modeling tools and existing databases. The integration of different kinds of
objects in a single scene can also be limited.

Volumetric textures
In our previous work, we have shown how to make volumetric textures an efficient
way of representing and rendering complex repetitive data : the precomputed multiscale
representation provides the right look of the data at the right scale. The textural approach
is limited to scenes which contain some repetitiveness. However it allows us to separate
the scales of specification into a local 3D aspect (the texel pattern) and a wide aspect (the
surface on which texels are mapped, and the deformation of these texels). Therefore,
volumetric textures provide a relatively general representation of complex scenes, and
enable an efficient unaliased ray-traced rendering (see section 2). Thus, volumetric
textures are a good trade off between generality and efficiency.

But the texel representation described in previous work is mostly specific, as the
texel content has to be specified ‘manually’ by the user, and the surface has to be
discretized by bilinear patches in such a way that one texel corresponds to one patch.
In order to make the volumetric texture model usable, we describe in this paper :� A way to convert usual object descriptions into volumetric textures (section 3), thus

allowing the use of existing modeling tools and databases ;� A method of rendering texels mapped on any mesh type (section 4), using texture
coordinates such as those for usual 2D textures.

Having solved these two major issues, we illustrate the model by synthesizing verdant
landscapes (section 5) using an existing representation of trees and a free mapping on
surfaces.

2 Volumetric Textures

Kajiya and Kay first introduced texels in 1989 [KK89] mainly to render fur. Despite
the fact that the paper contained the basic ideas, a lot of coding is still required to
simulate other materials, and rendering is very slow since no multiscale scheme is
proposed. Moreover, the surface has to be subdivided into bilinear patches so that
one texel corresponds to one patch. However, the look of the resulting teddy-bear is
simply marvelous. The authors use a full volumetric storage as a 3D texture pattern
(the reference volume stored once) to encode the geometric data, and an underlying
surface meshed with bilinear patches (see figure 1). Each texel is mapped exactly upon
a bilinear patch and deformed in order to stick to the neighboring texels, thus forming a
thick layer upon the surface. The vertical edges (common with adjacent texels) can be
‘combed’ by the user.

surface

bilinear

patch

texels
reference
volume

Fig. 1. Texels on a surface

The voxel content is not really a density but rather an non-directional probability of
occlusion. Another crucial piece of data is stored in the voxels : a reflection model and
a local frame, which makes the volume reflect light just like a real object would. The
fur rendering implementation models the reflection from a cylinder, and the frame is
limited to the cylinder axis. These parameters are not really stored in the voxels since
they are constant in the volume (the variation in the combing is obtained at the mapping
level).

Thus the volumetric texture is defined by a reference volume, an underlying surface
made of bilinear patches, and a thickness vector at each vertex of the surface.

Shinya proposed some improvements in 1992 [Shi92], by storing the occlusion
for each spatial direction in order to make the occlusion direction-dependent, and by
traversing the volume by steps in each spatial direction. He listed unsolved problems
(texel construction from polygonal description, voxels prefiltering), and recommended
the use of a hierarchical approach.

In a previous paper, we proposed an extension to the texel representation [Ney95b],
for generality and efficiency : various data can be represented without extra coding,
and ray-tracing is achieved efficiently with low aliasing, using a single ray per pixel.
Efficiency is obtained with a multiscale scheme similar to the mip-mapping [Wil83].
The key idea lies in the encoding of the local geometry included in a voxel volume,
characterized by a Normal Distribution Function (NDF), in such a way that it can be
filtered to provide a lower resolution. Thus the volume can be precomputed at each
resolution at modeling time, as in mip-mapping. The generality is obtained by keeping
enough degrees of freedom in the NDF encoding. We have chosen to approximate this
NDF by finding the ‘closest’ ellipsoid, which needs few parameters.

This ellipsoid plays the role of the reflectance model and the local frame of Kajiya’s
model. It is determined at modeling time while discretizing a shape into the reference
volume. Local illumination is computed at rendering time by numerically integrating
the Phong model on the NDF. As for 2D mip-mapping, the two scales closest to the ray
thickness are used and interpolated, thus providing filtered data with only one ray per
pixel. Therefore, the features of this representation are a probability of occlusion, six
ellipsoid parameters, and a pointer to the eight children (if any), stored in each voxel of
an octree.

We have demonstrated in another paper [Ney95a] how to animate the representation
in the same spirit, separating the scales of control. Two important unsolved problems
were texel construction and texel mapping. Noma [Nom95] proposed a solution to the
problem of constructing texels from a particular kind of geometry : sparse little facets
(given by the AMAP tree modeling software).

In the next section, we present methods to convert most of the classical geometric
representations (CSG, polygonal meshes, L-systems, particle systems, hypertextures,...)
into volumetric textures. In section 4, we deal with texel mapping.

3 Texel Building

Many representations and modeling tools already exist to specify shapes, either general
or specific, that users know well and like to use. A convenient way to specify the
reference volume content is thus to convert existing representations into volumes.
3D scan-conversion still exists to convert some representations into volumes, but this

method parses the whole volume systematically, and is quite costly. Moreover, not only
do we need to know the voxel occupation, but also the local reflectance, which implies
that the method has to be extended.

CSG, polygonal meshes, implicit functions, particle systems and L-systems
[FvDFH90, RB85, Pa88] are primitive-based techniques : these constructions design
a shape by combining simple shapes (the primitives being respectively a solid, a
facet, a skeleton element, a trajectory segment, a terminal symbol). The simplicity
of these primitives allows more efficient and accurate conversion than straight 3D scan-
conversion : such a primitive can be defined by a distance function, or more conveniently
by the distance to its surface, made negative if the tested point is inside the shape. The
normals are given by the gradient of the distance function. The conversion of these
models is described in section 3.1.

On the contrary, scanner data and hypertextures [PH89] correspond to full
volumetric representations, for which data is given at each space location. Local density
orientation and octree compression are then determined by scanning the volume. We
detail these models in section 3.2.

We use the texel representation presented in our previous work [Ney95b], in which
the data is stored in an octree. To sum up the process, the construction corresponds to
the thinnest scale ; then a propagation is achieved in the upper stages of the octree in
order to precompute the filtered data at all resolutions ; finally a compression pass is
achieved to suppress unvarying information.

Note that by using a volumetric storage, building a shape looks like painting it
into a 3D drawing. This allows many operations while designing a shape : instead of
just setting the voxel data, one can add, substract, set only the NDF... This is used to
implement CSG operators as we will see hereafter.

3.1 Primitive-based models

Multiscale data structures like octrees are well-adapted to recursive construction :
recursive construction supposes us to be able to determine if a given space area is
inside, outside or on the frontier of a shape, in the same spirit of the Warnock algorithm
in 2D [FvDFH90]. The function which gives the distance from a tested point to the
surface of the shape to be built, conveniently made negative inside the shape, provides
a way to determine the status of a voxel regarding the shape (see figure 2) :� if the distance from the center of the current voxel (initially the root of the octree)

is greater than the radius of the sphere bounding the voxel, the voxel is outside the
shape.� if this distance is negative, its absolute value being greater than the radius, the voxel
is inside the shape.� otherwise the voxel is probably on the frontier, so we split the voxel into eight
children, and apply this algorithm to each child. If the minimum size is reached, we
evaluate and store the geometric information corresponding to this area of space.

Note that getting the distance function is easy for simple primitives such as sphere or
cylinder, and that normals can directly be obtained by computing the gradient.

We have implemented a large amount of primitives, that can be directly used in a
declarative script. For instance, a sphere

���������
is obtained with the distance function	�

� ����������������������� �� �!� � �

, which gives the criterion function 1
2

1 � "# $�%'&�(*) � that is

greater than 1 if the voxel is outside the shape, less than 0 if the voxel is inside, and in+
0
�
1, if the voxel contains the frontier.

ambiguous outside

ambiguous

inside
minimum
size occultation

 + NDF

d r

Fig. 2. Recursive volumetric construction of a shape (figured in 2D)

CSG operators like union or intersection are easy to implement : a new shape is
combined with the previous ones by using a special drawing mode which adds values
to existing ones in the voxels instead of setting the new value. Evaluating a whole CSG
tree requires computing each sub-tree in separated volumes.

Primitives are also used to paint ‘skeleton’ representations such as L-systems and
particle systems in the reference volume : successive segments are drawn in the volume
using cone or cylinder primitives.

Triangular meshes are represented in the same way using the triangle primitive :
the Euclidean distance from a point to a triangle can be easily obtained. The NDF is
constant and is equal to the triangle normal. (Note that we draw the mesh surface and
not the enclosed volume.)

We have also implemented implicit functions in the same spirit : a distance function
can be approximated using the potential, since the only necessary properties for the
function are that it be zero on the surface and to not increase any faster than the
Euclidean distance (otherwise a voxel can be declared outside instead of ambiguous).
Our approximation of the distance is 1- .�/�0 � 1, where

��1�2
'� �3�5476�8'9 	 28 , with
6�8

and	 8
'� �
being respectively the weight and the Euclidean distance of a skeleton element

(point, segment or triangular face).

Fig. 3. Texel conversion of : CSG, L-system, particle system, mesh, implicit surface.

3.2 Volumetric models

Volumes are another kind of data : medical CT-scan data (explicit field) or hypertexture
obtained from Perlin noise [Per85] (procedural field). Distances cannot easily be
obtained since the data does not really represent a surface. We have to use a volumetric
scan-conversion : we scan the data at the thinnest resolution, and we create the octree
voxel hierarchy “on the fly” only where non empty space is found.

With Perlin noise, the normals are obtained by gradient computation. For pure
volumetric density data such as CT-scan data, the density gradient has to be numerically
estimated from a neighborhood (this gives poorer results, which shows that direct
knowledge of the NDF is more important at this scale than the density distribution).

Fig. 4. Texel conversion of hypertexture (left) and tomographic image (middle). right : cyclic hypertexture pattern.

3.3 Discussion of the model
� Voxelizing a shape brings of course some approximations : from a short range, shapes
seem made of bricks and are a bit blurred. To avoid such effects, the volume resolution
has to fit the closest point of view requirements. This can be memory-consuming. But
one has to keep in mind that texels are built to represent small details in complex scenes ;
they are not supposed to handle short-range viewpoints. In such cases, a transition with
polyhedral geometry can be made [Nom95].� If duplicated without any variation, the texture will look very repetitive. This problem
is dealt with in section 4.3.� Color representation is not handled by the volumetric model which is a pure
geometric representation (it is not easy to filter colored geometry). In previous papers
[KK89, Shi92, Ney95b, Nom95], a color material is associated with a whole pattern.
We address this problem in two ways : by merging separated texels associated to
different materials, which is limited but easy to implement in volume rendering, and by
implementing classical textures (picture or procedural) that are used inside texels.

Fig. 5. left : real (top) and texelized (bottom) meshes. middle : textured texel. right : merging of two colored texels.

4 Mapping Texels
Previous publications on texels use a very simple mapping, requiring an underlying
surface made of bilinear patches on which texels are placed. The base of each texel
is fitted to the patch and their vertical sides are deformed in order to stick to adjacent
texels. This constrains the surface mesh, and supposes that the orientation and the size
of the texels correspond to the ones of the patches.

We specify in section 4.1 a general texel mapping in the same way that the 2D
mapping is defined, offering new degrees of freedom. The idea is to introduce 3D
texture coordinates inside the volumetric layer to specify the texel mapping. Note that
unlike 2D textures where the color computation is separated from the ray scene traversal,
in volumes rays have to traverse the texture. We describe this ray traversal in section
4.2. We explain in section 4.3 how to decrease the repetitive appearance of the mapping.

4.1 Mapping specification
We use surfaces consisting of triangles and bilinear patches. This allows the use of almost
any mesh type, since polygons with more points can be decomposed into triangles and

quadrilaterals. The size and the orientation of the polygons are independent of their
texel counterparts.

We associate to each vertex a vector H called a height vector which controls the texel
‘combing’, and a vector u

�
;: � <=� >��
which gives the texture coordinate at the point.

Also we define a scalar
	 >

such that the vertex at the top of H has a texture coordinate
*: ��<���>@? 	 >��
. In most cases

>A�
0 and

	 >B�
1. Kajiya’s mapping corresponds to

surfaces composed only of bilinear patches, and successive integer values for
:

and
<

at
vertices (the texel bounds coincide to the patch bounds). Note that we use three different
coordinate systems : the spatial one C where the coordinates are

D � E=� FG�
, the thick skin

space H attached to the faces where the coordinates are

JI �LKM�LNO�

(
NP�

0 on the face,NQ�
1 on the top of the layer, and

�I ��KR�
are barycentric coordinates of the face), and

the texture space S where the coordinates are

*: ��<���>T�

(see figure 6).

A

B
C

D

S space

F space

T space

texture

pattern

(fa
ce

)

(world
coordinates)

u=0

u=1

v=0

v=1

U=1

U=0

V=0

F space

T space

w=1

w=0

W=1

W=0

V=1

Fig. 6. draft : The parameterization U is normalized within the face. The parameterizations V and W are interpolated
using U and knowing the values at the vertices. top left : the boxes corresponding to the faces. bottom left : the reference
volume. top right : Kajiya’s mapping: one texel fits one face (for clarity we have only mapped the central box). bottom right :
general mapping defined by the XZY\[^]�[
_3` at the eight vertices (central box only).

Let us call the thick skin area corresponding to the faces boxes (in Kajiya’s mapping
boxes and texels are equivalent, i.e. S � H). Assuming that a triangle is a degenerated
bilinear patch, the transformations H � C and H � S are trilinear interpolations
(spatial coordinates and texture coordinates at any point are obtained from the values at
the eight vertices).

As in previous work [KK89], a material pointer is associated to each face, which
indicates the reference volume to use at this place, and we use classical Phong material
description, such as ambient diffuse and specular color, and roughness. The material
specification is slightly more complicated in our implementation since we allow the
merging of texels in the same volume, the superposing of texel layers, or the achievement
of operations such as scaling, permuting orientation, and so on. Moreover, Phong
parameters can be defined by 2D texture functions such as an image map or a Perlin 3D
noise. This is achieved by adding some items and linking the material descriptors used
for the same face.

4.2 Texture traversal while rendering

We precompute a bounding sphere and a grid around the surface, and a bounding sphere
for each face including the texel thickness (see figure 7). During the tracing of a ray,
this leads efficiently to the first face intersected by the ray. Texels stick to each other so
that in most cases only the upper and lower surfaces have to be tested for intersection.

When entering inside the skin space, we leave classical ray-tracing. The ray traversal
inside this space uses the neighborhood coherence of faces, so that we just have to

conic ray

bounding sphere

bounding box & grid

box bounding sphere

underlying surface

thick skin
box

thickness vector

triangle or
bilinear patch

Fig. 7. left : thick skin specification. right : grid and bounding boxes used for efficient ray-skin intersection computation.

compute the point where the ray leaves the box, thus providing the next crossed box.
This part of the traversal is described in previous articles [KK89, Ney95b]. Note that
we only have to compute intersection between a ray and bilinear patch, which leads to
a simple 2 a 2 b 1 system1 to solve.

At this stage we can switch to the H coordinates which are associated to the skin
space. For Kajiya’s simple mapping, S and H are identical, otherwise we have to cross
also this H space before accessing to a single texel area. This stage (see figure 8)
does not exist in previous methods. Note that in the skin coordinate system, the ray no
longer propagates in a straight line. The trilinear deformation being small, we can either
use a simple iterative scheme that gives correct intersections on the

;: � <=� >��
grid2, or

approximate the path by a straight line, which is generally sufficient. In the last case,
this stage of the traversal is a regular grid crossing, which is easy to implement.

Between two slices of the

;: � <=� >��

grid we are in a texel, so we switch to the reference
volume (i.e. the S space) that we cross linearly. This part of the volume traversal is
described in our previous paper [Ney95b], and is similar to classical volumetric rendering
(excepted the voxel content, and the local illumination computation). We use a kind of
cone tracing to allow adaptative rendering : we know the thickness of the ray at this
place, and we estimate the voxel size to be used in the octree regarding this aperture
(this is exactly a 3D mip-mapping).

reference volume
 (octree)

usefull voxel size
according to ray thickness

uvw space
 (texel)

UVW space (box)

xyz space

one texel

skin space entrance
(test all faces of boxes which
 bounding sphere intersects the ray)

skin space exit
(ray−patch intersection)

box change
(ray−patch intersection)

uvw crossing
(linearized or
 iterative sheme)

underlying surface

thick

 skin

Fig. 8. Ray traversal inside the thick skin, crossing the boxes, then the texels, then the voxels at the adapted size.

1 A c 1 polynomial is of degree one in each variable, i.e. the highest degree term is dfe�ghe�i .
2 The ray direction is expressed in j space. Assuming it is straight allows to obtain an

approximation of the distance to the grid, that we used to follow the path in k space. We
iterate while the point is not close enough to the l*mon'pGn'qsr grid of j space, on the wanted slice.

4.3 Continuous and discrete jittering

A simple mapping induces a very regular aspect. This aspect can be improved by jittering
the diverse parameters.

When the texture is continuous, the pattern has to be cyclic so that no frontier is
visible. Continuous perturbations can be obtained by jittering texture coordinates, texel
thickness, or thick skin orientation (by modifying height vectors). A Perlin noise is
well-suited to this purpose.

Fig. 9. Simple mapping; jittering of texture coordinates, vectors direction, vectors length.

When the pattern consists of an isolated object, there is no longer a continuity
constraint. Then, more manipulations can be used : alternating reference volume and
material, displacing and scaling the texel content, applying symmetries or

6t9
2 rotations

(i.e. either axis permutation).

Fig. 10. Simple mapping; perturbation due to displacing, rotating, scaling.

5 Results

We have applied our technique to generate verdant landscapes (see Appendix for the
color images). The computations are done on an SGI Indy having a 200Mhz R4400
processor. The rendering is achieved with a single ray per pixel, at video size (768 a 576),
and requires 20 minutes on average.

The first scene is a lawn, covering a hill made of 1400 bilinear patches. The mapping
is jittered by modifying the height vectors. Each texel contains 16 grass blades and
sometimes a flower. In total 22000 blades and 700 flowers are present. The blades
are generated using parabolic trajectories, similar to particle systems, with the section
having a ‘V’ shape. A 1283 resolution is used for the volume.

The second scene represents 512 spaced trees on a flat land made of 1024 bilinear
patches. The trees are modeled using 6 iterations of a L-system, yielding 2154 branches
and 6336 leaves. The reference volume contains one isolated tree. Since the camera
is very close to the trees, we have taken a 5123 volumetric resolution (the volume is
compressed more than 99.9%). A single tree model is used, and is modified along the
texels by changing the size, the orientation, the position and the material. Note the
continuous transition between further and closer trees.

The last example is forest covered mountains, using 25000 trees mapped on a 1404
bilinear patches surface. The texture is continuous so that the reference volume has
a cyclic content, consisting of two trees clipped on the edges of the volume. Texture
coordinates and height are jittered. The trees are seen from a far point of view most of
the time, but the camera sometimes gets closer : a 2563 resolution is used. Note that
the scene contains around 200 million primitives (branches and leaves), reproduces
fine shadows, gives smooth transitions while zooming, with very little aliasing, using a
single ray per pixel.

6 Conclusion
Two important problems of the volumetric texture representation were texel construction
and mapping. We have presented here how to convert various usual representations such
as meshes or L-systems into texels and how to define and render mapped texels.

Volumetric texture is now a complete, convenient and efficient tool : a scene is
conveniently built and animated using the textural aspect, the pattern can be designed
using usual modeling tools, the rendering is done efficiently with low aliasing in ray-
tracing, with the cost depending more on visual complexity than on data complexity.

A lot more can still be brought to the texel world. One can imagine specialized
interactive tools to specify or manipulate the reference volume. On the other hand, texels
are a new approach to the level-of-detail problem. Some studies may be conducted in
order to use texels outside the scope of textures, as an alternate geometric representation
to be used for distant viewpoints.

References
[dRa88] Phillippe de Reffye and al. Plant models faithful to botanical structure and

development. In John Dill, editor, Computer Graphics (SIGGRAPH ’88
Proceedings), volume 22(4), pages 151–158, August 1988.

[FR86] Alain Fournier and William T. Reeves. A simple model of ocean waves. In
David C. Evans and Russell J. Athay, editors, Computer Graphics (SIGGRAPH
’86 Proceedings), volume 20, pages 75–84, August 1986.

[FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practices (2nd Edition). Addison Wesley, 1990.

[KK89] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional textures.
In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89 Proceedings), volume
23(3), pages 271–280, July 1989.

[Ney95a] Fabrice Neyret. Animated texels. In Eurographics Workshop on Animation and
Simulation’95, pages 97–103, September 1995.

[Ney95b] Fabrice Neyret. A general and multiscale method for volumetric textures. In
Graphics Interface’95 Proceedings, pages 83–91, May 1995.

[Ney96] Fabrice Neyret. Textures Volumiques pour la Synthèse d’Images. PhD thesis,
Université Paris-XI - INRIA, 1996.

[Nom95] Tsukasa Noma. Bridging between surface rendering and volume rendering for
multi-resolution display. In 6th Eurographics Workshop on Rendering, June 1995.

[Pa88] Przemyslaw Prusinkiewicz and al. Developmental models of herbaceous plants for
computer imagery purposes. In John Dill, editor, Computer Graphics (SIGGRAPH
’88 Proceedings), volume 22, pages 141–150, August 1988.

[Per85] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics
(SIGGRAPH ’85 Proceedings), volume 19(3), pages 287–296, July 1985.

[PH89] Ken Perlin and Eric M. Hoffert. Hypertexture. In Jeffrey Lane, editor, Computer
Graphics (SIGGRAPH ’89 Proceedings), volume 23(3), pages 253–262, July 1989.

[RB85] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms for
shadingand rendering structured particle systems. In B. A. Barsky, editor, Computer
Graphics (SIGGRAPH ’85 Proceedings), volume 19(3), pages 313–322, July 1985.

[Shi92] Mikio Shinya. Hierarchical 3D texture. In Graphics Interface ’92 Workshop on
Local Illumination, pages 61–67, May 1992.

[Wil83] Lance Williams. Pyramidal parametrics. In Computer Graphics (SIGGRAPH ’83
Proceedings), volume 17(3), pages 1–11, July 1983.

[WP95] Jason Weber and Joseph Penn. Creation and rendering of realistic trees. In Robert
Cook, editor, Computer Graphics (SIGGRAPH ’95 Proceedings), pages 119–128,
August 1995.

