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Figure 1: A watercolorized video. Original video (left), and its watercolorization (right).

Abstract
In this paper, we present a method for creating watercolor-like ani-
mation, starting from video as input. The method involves two main
steps: applying textures that simulate a watercolor appearance; and
creating a simplified, abstracted version of the video to which the
texturing operations are applied. Both of these steps are subject to
highly visible temporal artifacts, so the primary technical contri-
butions of the paper are extensions of previous methods for tex-
turing and abstraction to provide temporal coherence when applied
to video sequences. To maintain coherence for textures, we employ
texture advection along lines of optical flow. We furthermore extend
previous approaches by incorporating advection in both forward
and reverse directions through the video, which allows for minimal
texture distortion, particularly in areas of disocclusion that are oth-
erwise highly problematic. To maintain coherence for abstraction,
we employ mathematical morphology extended to the temporal do-
main, using filters whose temporal extents are locally controlled by
the degree of distortions in the optical flow. Together, these tech-
niques provide the first practical and robust approach for producing
watercolor animations from video, which we demonstrate with a
number of examples.

Keywords: Non-photorealistic rendering, abstract stylization, ani-
mated textures, temporal coherence.

1 Introduction
Watercolors have two essential characteristics that make them es-
pecially beautiful and evocative. They have distinctive textures —
including those due to separation and granulation of pigments, as
well as the texture of the paper itself, which shows through on
account of watercolors’ transparency. And they have an ability to

suggest detail through abstract washes of color. In recent years,
researchers in computer graphics have found ways to reproduce
much of watercolors’ characteristic appearance, taking an image
as input and producing a watercolor-like illustration as output in a
process known as “watercolorization” [Curtis et al. 1997; Lum and
Ma 2001; Van Laerhoven et al. 2004; Bousseau et al. 2006]. How-
ever, the same characteristics that give watercolors their distinctive
charm are nonetheless quite difficult to reproduce in any tempo-
rally coherent fashion, so the analogous process of taking a video
as input and producing a watercolor-like animation as a result has
remained a longstanding and elusive goal. In this paper, we show
how this goal can be achieved to a large extent.

We use two different approaches to achieve temporal coherence.
To preserve coherence of the watercolor texture itself, we advect a
set of pigmentation textures according to an optical flow field com-
puted for the video. And to produce a temporally coherent abstrac-
tion of the video, we use 3D mathematical morphology operations
to create spatially and temporally smooth (i.e., non-flickering), sim-
plified areas to render with watercolor textures.

The major technical contribution of the paper is the combination
and application of these two existing algorithmic techniques, tex-
ture advection and mathematical morphology, to a new domain.1
Moreover, the successful adaptation of these techniques to this new
domain has required extending them in a number of ways. For ad-
vection, we propose a new scheme that involves simultaneously
advecting two different texture fields, in forward and reverse di-
rections through the video, and optimizing their combination on a
per-pixel basis so as to yield minimal texture distortion — even in
areas of disocclusion, which are notoriously difficult to handle with
previous approaches. For abstraction via mathematical morphology,
we extend traditional approaches by also filtering over time, and by
taking into account errors and distortions in optical flow to control
the temporal extent of the 3D filters. Together, these contributions
provide the first practical and reasonably robust approach for pro-
ducing realistic watercolor animations from video sequences.

In the rest of this paper, we will briefly survey related work (Sec-
tion 2), describe our approach to texture advection in detail (Sec-
tion 3), present our extensions of mathematical morphology for ab-
straction (Section 4), demonstrate our results (Section 5), and fi-
nally discuss areas for future work (Section 6).

1Advection has previously been used for visualizing fluids and flow,
while mathematical morphology has typically been used for image denois-
ing.



2 Related work

A significant body of research has been devoted to creating wa-
tercolor rendering for static images [Small 1991; Curtis et al. 1997;
Lum and Ma 2001; Lei and Chang 2004; Van Laerhoven et al. 2004;
Johan et al. 2005; Luft and Deussen 2006; Bousseau et al. 2006].
Commercial tools, like PhotoshopTMand The GIMP, also provide
ways of creating watercolor-like renderings from images.

In general, the difficulty with extending non-photorealistic render-
ing (NPR) techniques from static to moving images is that, with-
out careful consideration to temporal coherence, the resulting ani-
mations exhibit one of two problems: either the illustration effects
remain fixed in place across the image, an unwanted artifact that
has become known as the “shower door” effect; or the illustration
effects exhibit no temporal coherence whatsoever, randomly chang-
ing in position and appearance from frame to frame, which can be
even more visually distracting.

Several techniques have been developed to combat these problems
in various NPR styles, although most of this work concerns the
problem of animated 3D scenes, in which geometry information
is available. For watercolorization, these approaches rely on tex-
ture mapping in 3D [Lum and Ma 2001], or on the distribution
of discrete 2D primitives over surfaces [Luft and Deussen 2006;
Bousseau et al. 2006]. Similarly, most of the work on video styliza-
tion has been in the realm of primitive-based rendering, where dis-
crete paint strokes [Litwinowicz 1997; Hertzmann and Perlin 2000;
Hays and Essa 2004; Collomosse et al. 2005] or other primitives
[Klein et al. 2002] are applied to create the stylization. Applying
such methods to watercolor raises the difficult question of finding
a set of 2D primitives that, once combined, produces a continu-
ous texture (typically pigments or paper). In that spirit, Bousseau
et al. [2006] has proposed to use a Gaussian kernel as a primitive
for watercolor effects, but was restricted to Perlin noise. We rather
evolve the texture globally, allowing us to deal with any scanned
texture.

A related problem has been addressed by Cunzi et al. [2003], who
use a “dynamic canvas” to preserve the appearance of a 2D back-
ground paper texture while rendering an interactive walkthrough of
a static 3D scene. Our work takes inspiration from theirs to perform
a similar kind of dynamic adaptation of our watercolor textures,
while at the same time tracking dynamic object motions in a chang-
ing video scene. Our work also shares some similarity to Fang’s
“RotoTexture” [Fang 2006], in that both attempt to provide textures
that track dynamic scenes; however, Fang’s work is concerned with
maintaining the appearance of 3D textures rather than 2D. Other
work in scientific visualization [Max and Becker 1995; Jobard et al.
2001], fluid simulation [Stam 1999; Neyret 2003], and artistic im-
age warping [Sims 1992] shares the goal of evolving texture along
a 2D vector field. Our work builds on the advection approach that
these schemes introduced.

A significant body of research has been concerned with the issue of
abstraction of video as well. Winnemöller et al. [2006] presented a
method to smooth a video using a bilateral filter, which reduces the
contrast in low-contrast regions while preserving sharp edges. We
use a similar approach to produce large uniform color areas, and we
go a step further in simplifying not just the color information but the
2D scene geometry as well. In “video tooning,” Wang et al. [2004]
use a mean-shift operator on the 3D video data to cluster colors in
space and time. To smooth geometric detail, they employ a poly-
hedral reconstruction of the 3D clusters followed by mesh smooth-
ing to obtain coarser shapes. Collomosse et al. [2005] use a similar
type of geometric smoothing involving fitting continuous surfaces
to voxel objects. Such high-level operations are usually computa-
tionally expensive and may sometimes require user input to produce

convincing results. Our approach, by contract, uses simple low-
level image processing for geometric as well as color simplification.
In essence, we extend the approach of Bousseau et al. [2006], who
use a morphological 2D filter to abstract the shapes of a still image
and mimic the characteristic roundness of watercolor, by extending
the morphological filter to the 3D spatiotemporal volume in a way
that provides temporal coherence as well.

Finally, many image filtering operations have been extended to the
spatiotemporal domain to process video: the median filter [Alp
et al. 1990], average filter [Ozkan et al. 1993], and Wiener filter
[Kokaram 1998] are all examples. A motion compensation is usu-
ally applied before filtering to avoid ghosting artifacts in regions of
high motion. Recently, Laveau and Bernard [2005] proposed ori-
enting a morphological structuring element along an optical flow
path in order to apply these operators on videos. However, their fil-
ters have been developed in the context of noise removal, which
requires filters of small support. Our application is more extreme in
that it targets the removal of significant image features larger than a
single pixel. To this end, we propose a type of adaptive structuring
element that smoothes the appearance and disappearance of signif-
icant image features.

3 Texture advection
The “granulation” of watercolor pigments provides a large share of
the richness of continuous tone techniques. Granulation is caused
by pigment deposition on paper or canvas: the more pigments are
deposited, the more the color is saturated. The effect is seen in
both wet techniques like watercolor and dry techniques like char-
coal or pastel. In addition, watercolors are transparent, and their
transparency allows the texture of the paper itself to show through.

To achieve these texture effects, we follow the approach of
Bousseau et al. [2006], who showed that for computer-generated
watercolor, convincing visual results are obtained by considering a
base color image C (e.g., a photograph) that is modified according
to a grey-level pigment texture P ∈ [0,1] at each pixel to produce a
modified color C′ according to the equation

C′ = C
(

1− (1−C)(P−0.5)
)

(1)

However, in order to create effective watercolor animations, this
texture P must satisfy two competing constraints: On the one hand,
it must maintain its appearance in terms of a more or less homo-
geneous distribution and frequency spectrum. On the other hand, it
must follow the motion in the scene so as not to create a “shower
door” effect.

To resolve this conflict we build on previous work on advected tex-
tures [Max and Becker 1995; Neyret 2003], classically used to de-
pict flow in scientific visualizations. The general idea of such meth-
ods is to initialize the texture mapping on the first frame of an ani-
mation, and then evolve the mapping with the motion flow. In these
methods the texture mapping is reinitialized whenever the statisti-
cal spatial properties of the current texture become too dissimilar to
the original one.

We employ this same basic idea to our situation of applying tex-
ture to video, substituting optical flow for fluid flow. One signifi-
cant complication, which arises quite frequently for videos but not
for continuous fluid flows simulations, is the occurrence of disoc-
clusion boundaries: places where new pixels of the background are
revealed as a foreground object moves across a scene. Optical flow
fields at disocclusions are essentially undefined: there is no pixel
in the prior frame corresponding to these disoccluded boundary re-
gions. Classical advected textures are designed for handling only
continuous space-time distortions. In the absence of continuity, they
tend to fail quite badly as shown Figures 3 and 4.



In order to handle disoccluded boundaries effectively, we introduce
the notion of bidirectional advection: simultaneously advecting two
texture layers in opposite directions in time — from the first frame
of the video to the last, and from the last frame to the first. We use
a combination of these two texture layers weighted at each pixel by
the local quality of the texture from each direction. In the rest of
this section we describe our algorithm and its properties.

3.1 Advection computation

In the following, we will use x = (x,y) for screen coordinates, and
u = (u,v) for texture coordinates. An advected texture relies on a
field of texture coordinates u(x, t), which is displaced following a
vector field v(x, t): for any frame t, the vector u defines the lo-
cation within the texture image P0 to be displayed at position x,
i.e. the mapping. For simplicity we assume that x and u coordi-
nates are normalized on the interval [0,1] and that u(x,0) = x.
Therefore in Equation 1 the composited pigment texture will be
P(x, t) = P0(u(x, t)). We will see in the following that several such
layers will be combined to obtain the final result. Our vector field
is obtained from an optical flow extracted from the video (we
rely on a classical gradient-based method available in Adobe After
EffectsTM). The vector v indicates for each frame t where the pixel
at position x came from within frame t −1: v(x, t) = xt−1 −xt .

The purpose of advection is to “attach” the texture P0 to the
moving pixels of the video, which is theoretically done by dis-
placing the texture coordinates according to the vector field:2

u(x, t) = u(x+v(x, t), t −1). However, this backward mapping is
problematic wherever the optical flow is poor or ill-defined, as at
disocclusion boundaries. We will discuss how these problematic
cases are handled momentarily.

3.2 Controlling the distortion

With this basic approach, the distortion of the advected tex-
ture increases with time. To combat this distortion, Max and
Becker’s [1995] and Neyret’s [2003] approaches blend two
or three phase-shifted texture layers, respectively (See Fig-
ure 2). In both schemes, the distortion is reset periodically (i.e.,
u(x, t +τ) = u(x, t)), allowing the original texture to be used again.
The regeneration period τ is chosen via a user defined delay [Max
and Becker 1995] or a dynamic estimation of the distortion [Neyret
2003]. The fact that the regeneration occurs periodically guaranties
that our system can handle videos of arbitrary length.

Like Max and Becker, we rely on two texture layers, but we com-
bine one “forward” mapping u f , advected from the beginning to
the end of the video sequence, with one “reverse” mapping ur, ad-
vected from the end to the beginning. The final advected pigment
texture P′ is a combination of these two fields, calculated on a per-
pixel basis by taking into account the local distortions ω f and ωr of
the forward and reverse mappings u f and ur, respectively, within a
given frame:

P′(x, t) = ω f (x, t)P0
(

u f (x, t)
)

+ ωr(x, t)P0
(

ur(x, t)
)

We will show precisely how the distortion is measured and how ω f
and ωr are computed later on. For now, to understand the intuition
behind this approach, it suffices to note that texture distortion grad-
ually increases in the direction of advection. Since u f is advected
forward, its distortion increases with time. However, since ur is

2In order to manage boundary conditions properly, we assume that the
texture P0 is periodic, and that u(x, t) ≈ u(x, t −1)+ ∂u

∂x ·v(x, t) whenever
x+v(x, t) seeks outside [0,1]2, in the spirit of [Max and Becker 1995].

Figure 2: Approaches to control the distortion of the advected texture.
(a) Max and Becker scheme, which uses two phase-shifted, overlapping tex-
ture layers at any given time. (b) Our scheme, which also uses two texture
layers at a time but advected in opposite time directions. In the two dia-
grams, the green solid areas represents, roughly, the relative contribution of
each advected layer to the final texture’s appearance, which corresponds to
the weight w(t). Note that in prior work (a), in order to maintain temporal
coherence, the advected layers do not begin contributing significantly until
they are already somewhat distorted. In our method (b), by contrast, tex-
tures contribute maximally where they are least distorted. Blending textures
advected in opposite time directions also allows for less distortion every-
where, since distortion is decreasing in one texture just as it is increasing in
the other. Finally, bidirectional advection handles disocclusion boundaries
much better since the disocclusion leaves one of the two layers unaffected,
with the unaffected layer contribution most to the texture’s final appearance.

advected backwards through the video sequence, its distortion de-
creases with time. The combination of the two textures can there-
fore be used to create a less distorted texture. Moreover, a disoc-
clusion in the forward sequence becomes an occlusion in the re-
verse, which is no longer a source of distortion; thus, a well-defined
texture can always be used. (A similar observation was noted by
Chuang et al. [2002] in their work on video matting.)

The technical challenges of this approach are to quantify the visual
distortions and to choose a clever way of combining the two ad-
vected fields. Three competing goals have to be taken into account:
(1) minimizing the distortion; (2) avoiding temporal discontinuities;
and (3) limiting visual artifacts such as contrast variation.

In the rest of this section, we detail our method: how we quantify
the distortion (Section 3.3), and how we adjust the weights of the
two advected fields (Section 3.4).

3.3 Distortion computation

We need a way to estimate the visual quality of a distorted texture
at each pixel. Various methods exist to compute the distortion of a
non-rigid shape. The general principle is to compute a deformation
tensor and to choose an appropriate norm to compute the distortion.

All deformation tensors are based on the deformation gradient ten-
sor F , corresponding to the Jacobian matrix of the shape coordi-
nates (in our case the texture coordinates): Fi j(x, t) = ∂ui(x, t)/∂x j.
As in previous work, we do not wish to consider translations and
rotations to be distortions because they do not alter the visual
properties of the texture. Instead, it is typical to rely on a strain
tensor, which cancels antisymmetric components. However, unlike
Neyret [2003], we wish to deal with large displacements, so we can-
not use the infinitesimal strain tensor, which is the classical approx-
imation. We therefore choose the Cauchy-Green tensor: G = F T F
(one can verify that multiplying F by its transpose cancels the ro-
tations). The eigenvectors of G give the principal directions of de-
formations, and the tensor’s eigenvalues λi give the squares of the
principal deformation values: an eigenvalue λi > 1 corresponds to a
stretch, whereas an eigenvalue λi < 1 corresponds to a compression.

We want to derive an estimation of the visual quality of the distor-
tion ξ as a scalar in [0,1] with 0 representing no distortion, and 1
representing distortion that is intolerable. We assume that compres-
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Figure 3: Analysis of our bidirectional advected texture. (a) Original video
sequence. (b) A checkerboard texture (for illustration purposes), advected
forward using optical flow. (c) The same texture, advected in the reverse
time direction using reverse optical flow. (d) The combined, bidirectional
advected texture. (e) Advected texture using the previous approach of Max
and Becker. Note how the bidirectional advected texture in (d) shows much
less distortion in all frames than the previous approach in (e).

sion and stretching are equally bad from a visual standpoint. We
therefore define the visual deformation in the two principal direc-
tions σ1 and σ2 as: σi(x, t) = max

(
√

λi(x, t), 1/
√

λi(x, t)
)

.

We define the visual distortion ξ as the quadratic mean of both
deformations, normalized to [0,1]:

ξ (x, t) =
ξ ′(x, t)−ξmin

ξmax −ξmin

where ξ ′(x, t) =
√

σ2
1 (x, t)+σ 2

2 (x, t) is an unnormalized scalar
measure of the visual distortion; ξmin =

√
2 is the minimum value

of ξ ′ (representing no distortion); and ξmax is a maximum bound
over which the distortion is considered too high, measured experi-
mentally. In practice we use ξmax = 5.

3.4 Adjusting weights

Given the distortions ξ f and ξr of each advected mapping u f and
ur, we must now find the appropriate set of weights ω f and ωr at
each pixel in order to minimize the final distortion.

Our weights must satisfy a number of properties: They should lie
on the interval [0,1]; sum to 1 at every pixel; be inversely related to
the texture distortion; gradually decrease to 0 at regeneration events
in order to maintain overall temporal continuity; and vary smoothly,
both in space and in time.

We choose the following definition for the weights, which satisfy
all of these properties:

ω f (x, t) =
ω ′

f (x, t)
ω ′

f (x, t)+ω ′r(x, t) ωr(x, t) =
ω ′

r(x, t)
ω ′

f (x, t)+ω ′r(x, t)

with
ω ′

f (x, t) = g f (x, t)h f (t) ω ′
r(x, t) = gr(x, t)hr(t)

Here, g f and gr are measures of the distortions of the forward and
reverse textures relative to the other:

g f (x, t) =
1− (ξ f −ξr)

2 gr(x, t) =
1− (ξr −ξ f )
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Figure 4: Comparison of distortion rates for our method (green squares)
vs. Max and Becker (red diamonds). Shown are resulting distortions for a
theoretical case, in which distortion increases at a constant rate (left); and
a real case, measured at a disoccluded pixel (event occurs at t = 12) (rigth).
Note how our method is able to cancel large distortions almost entirely.

and h f and hr are the temporally decaying weighting functions
shown in Figure 2:

h f (t) = cos2
(π

2
t mod τ

τ

)

hr(t) = sin2
(π

2
t mod τ

τ

)

where τ is the delay between two regenerations.

Figure 3 shows the resulting advected texture for a test scene, and
Figure 4 shows the resulting distortion values for two different pix-
els. If the distortion rate is regular, our blending behaves much like
that of Max and Becker [1995]; however, when the distortion rate is
high, for example at disocclusion boundaries, our blending results
are much better.

3.5 Limiting contrast oscillation and tuning τ

The blending of the two advected layers produces a cycle between
frames with one single texture (ω f = 1 or ωr = 1) and frames with
two blended textures (for all other values of ω f and ωr). Contrast
is reduced, especially as ω f and ωr approach the same value of
1/2, because high frequencies are dimmed. To reduce the percep-
tion of the resulting oscillation of contrast, we include a second pair
of advected layers with a regeneration cycle halfway out of phase.
The average of these two advected textures gives a nearly constant
amount of contrast. As two out-of-phase identical textures moving
in the same direction may produce spatial correlation (i.e., ghost-
ing), we use a visually similar but distinct texture image for this
pair. Thus, our complete model relies on four layers.

In previous methods, the regeneration period τ is chosen as a trade-
off between texture distortion and loss of motion perception (if
texture is regenerated too often there is no longer advection). As
pointed out by Neyret [2003], the ideal value of τ is generally not
the same in each region of the image, depending on the local veloc-
ity. Thus, Neyret proposes an adaptive regeneration scheme, which
consists of advecting several texture layers with increasing regener-
ation periods, and locally interpolating between layers to minimize
the distortion. In this way, fast regeneration occurs only in regions
of high distortion. Our method already has some spatial adapta-
tion. Still, the same idea is also applicable in our case since veloc-
ity varies in the optical flow. Being able to choose between various
periods also helps minimize the distortion due to disocclusion. In
practice, we found that two pairs of layers were sufficient in most
cases. One fast layer (τ = 15 frames) allows for good correction of
disocclusions, while a slower layer (τ = 30 or 60 frames) provides
good motion perception in slow-motion areas.

4 Shape abstraction

One of the distinctive characteristics of watercolor is the medium’s
ability to suggest detail with abstract washes of color. In this sec-
tion, we examine how raw video footage can be abstracted into



shapes that are more characteristic of watercolor renderings, while
remaining temporally coherent.

To this end, we generalize the work of Bousseau et al. [2006], who
use mathematical morphology filters to create more regular image
regions. While relatively little known, such filters have long been
described as having the ability to “simplify image data, preserving
their essential shape characteristics and eliminating irrelevancies”
[Haralick et al. 1987]. In the following we briefly present the gener-
alized versions of the morphological operators for continuous-tone
images, before extending them to temporally coherent operators
adapted to video stylization. For further details on morphological
filtering, see the overview of Serra and Vincent [1992] or the work
of Haralick et al. [1987].

4.1 Morphological operators

Figure 5: Mathematical morphology operators, generalized for continuous-
tone images. (a) Original image. (b) Erosion. (c) Dilation. (d) Opening
(erosion followed by dilation). (e) Closing (dilation followed by erosion).
(f) Closing followed by opening: our chosen morphological filter.

Let I be an image and B a structuring element, that is an array that
contains the relative coordinates of a pixel’s neighborhood. The
morphological dilation δ of I by B at a pixel x and its dual, the
morphological erosion ε , are defined by

δB(I)(x) = max
b∈B

{I(x−b)} εB(I)(x) = min
b∈B

{I(x+b)}

The dilation spreads the light features of the image whereas the
erosion spreads the dark features. (See Figure 5.)

The morphological opening is then defined as a sequence of one
erosion followed by one dilation, δB ◦εB(I), and the morphological
closing as one dilation followed by one erosion εB ◦δB(I). Opening
removes light features of the image, whereas closing removes dark
features.

An effective filter for removing both dark and light features, used
by Bousseau et al. [2006], is the sequence of one closing followed
by one opening. In this case, the size of the morphological struc-
turing element defines the minimum size of the features preserved
by the filtering, and the shape of the structuring element defines
the shape of the filtered objects in the resulting image. For simplic-
ity, the operators are applied on the three color channels separately.
Although this independent filtering of the channels produces color
ghosting on dilation and erosion (see Figure 5(b,c)), it becomes un-
noticeable when these dual operators are applied in sequence (see
Figure 5(d,e,f)).

4.2 Spatiotemporal morphological operators

Applying morphological filtering on each image separately pro-
duces a great deal of flickering, as many features appear and dis-

Figure 6: A visualization of the effects of various filters on the spatiotem-
poral volume (filter represented in gray). These figures show a portion of a
single horizontal scanline of video as a function of time, which appears on
the vertical axis. (a) Original video. (b) The results of a 2D morphological
filter (note the vertical noise, which corresponds to flickering in the filtered
sequence). (c) The results of a constant-width spatiotemporal filter (note the
sudden onset of features, corresponding to popping in the filtered sequence).
(d) The results of our tapered filter (note how features appear and disappear
gradually rather than suddenly).

appear at every frame (See Figure 6.) Moreover, as each feature is
at least as large as the 2D structuring element, the features’ appear-
ances and disappearances produce noticeable “popping” artifacts.
To reduce temporal artifacts, we extend the structuring element to
the temporal domain. The resulting 3D structuring element can be
thought of as a stack of neighborhoods in k successive frames. The
3D element reduces flickering as it guarantees that each new feature
remains visible during all k frames. However, care must be taken
to correctly orient the filter. Indeed, moving objects correspond to
spatiotemporal regions that are not necessarily perpendicular to the
time axis. As in previous work [Ozkan et al. 1993; Kokaram 1998],
we compensate for this motion by translating the neighborhood at
each pixel according to the optical flow for each frame. The re-
sulting filtering produces uniform temporal regions, resulting in a
higher temporal coherence.

Unlike previous methods in video denoising, which used small fil-
ter kernels (usually 3× 3× 3 pixels), we would like to use kernels
with much larger spatiotemporal support (generally, 7× 7× 9 pix-
els) to abstract away significant details. In order to reduce the pop-
ping produced by the abrupt appearance or disappearance of these
details, we design the structuring element in such a way that visibil-
ity events occur gradually. As such, we taper the structuring element
at its extremities (see Figure 7). The features in the resulting video
appear and disappear gradually, as shown in Figure 6(d). Indeed,
their shapes in the spatiotemporal volume, visualized in this figure,
mirror precisely the shape of the tapered 3D structuring element
that we use.

Figure 7: A visualization of how our tapered morphological filters follow
the optical flow from frame to frame.

Finally, proper spatiotemporal filtering assumes that every pixel has
a correct motion trajectory throughout the temporal support of each
filter. In practice, this assumption fails for several reasons: First, a
pixel can become occluded by another object in the video. Second,
optical flow is usually just an approximate estimation of the motion
flow, especially in disocclusion areas where no real correspondence



can be found between two successive frames. A common approach
to increase the robustness for spatiotemporal filtering in such cases
is to make the filter adaptive [Ozkan et al. 1993]: the idea is to
ignore the contribution of outliers in the filtered value. However, a
direct application of this method to morphological operators would
create holes in the structuring element, which would have a direct
impact on the shapes in the resulting image. Instead, we simply
truncate the structuring element in the temporal domain as soon as
an “outlier” is detected. A pixel is flagged as an outlier when its
estimated motion accuracy is below a defined threshold. Similarly
to Chuang et al. [2002], we estimate the accuracy of our optical
flow assuming a constant intensity along motion trajectories. This
is done by comparing the mean color on a 3× 3 neighborhood of
a pixel between two frames. In practice we use the L2 norm of the
distance in RGB.

5 Results and discussion

Following Bousseau et al. [2006], we produce the final watercolor
rendering as the composite of the abstracted video with the ad-
vected pigmentation texture using Equation (1) (see Figure 8). We
also add a similar edge darkening pass on the abstracted video. The
spatiotemporal filter we have described can either be used alone or
after first applying a bilateral filtering that simplifies colors, as in
Winnemoeller et al. [2006].

We have implemented our method as an Adobe After Effects plug-
in. Our performance statistics are dependent on the whole system,
and our algorithms have not been optimized. Currently, advection
takes 5 seconds per frame and morphological filtering about 30.
The advection computation could be sped up considerably using
graphics hardware, as the current bottlenecks are mainly texture ac-
cess and bilinear interpolation. Morphological filtering operations
are notoriously expensive. However, some of the clever implemen-
tation strategies devised for 2D processing [Weiss 2006] may be
generalizable to 3D, which could greatly improve the performance.

Our results are best viewed in the accompanying videos.3 The “cac-
tus” sequence shows how our new advection scheme handles strong
motion boundaries. The “waves” sequence gives an example of
complex motions that are well depicted by the advection, without
introducing distortions.

In all of the results, the quality of the texture advection is limited
by the quality of the optical flow. Errors in the optical flow lead to
“swimming” artifacts in the pigment texture. Such errors are espe-
cially visible in relatively unstructured areas of the scene, and near
occlusion boundaries. Other kind of motion representations, such
as motion layers [Wang and Adelson 1994] could correct these ar-
tifacts in some situations, but we believe that the vector field repre-
sentation can handle motions that other representations cannot (e.g.,
zoom or large parallax on the same object). We have also applied
our advection scheme on a computer-generated sequence, which
shows how the advection can accurately depict complex motions
and occlusions giving a correct motion flow, as shown in the ac-
companying video material.

As far as abstraction is concerned, our filtering is stable over time
and offers large color regions that appear and disappear gradually
over the animation. All the examples presented in our video have
been abstracted with a 7×7×9 structuring element. Increasing the
spatial extent of the structuring element generally requires increas-
ing its temporal extent as well, in order to allow time for the width
of the structuring element to increase and decrease gradually.

3Videos are available on the project webpage
http://artis.imag.fr/Publications/2007/BNTS07

Figure 8: Watercolor compositing. The final watercolor rendering (d) is
obtained from an input video (a) as the composite of the abstracted video (b)
with the advected pigmentation texture (c), using Equation (1).

Figure 9: Final results. Note the absence of distortions, even in the presence
of motion boudaries (left) or complex motions (right).

6 Conclusions

We have presented an approach to video watercolorization that
provides good temporal coherence given good optical flow. By
combining texture advection and mathematical morphology op-
erations, and by extending them to handle the types of distor-
tions commonly found in video sequences, we are able to produce
computer-generated watercolor animations that are convincing for
most scenes.

We see a number of areas for future work. First, we would like
to investigate whether motion estimation methods based on a post-
optimization of the optical flow, such as Particle Video [Sand and
Teller 2006], could be used to obtain a better vector field from
which we could perform our texture advection. It might also be
worthwhile to explore other domains in which high-quality optical
flow fields may be more readily available, such as watercoloriza-
tions of 3D pans and zooms across real-world scenes derived using
structure-from-motion estimations [Horn 1986].

We would also like to look at speeding up our computations, per-
haps through a GPU implementation of our texture advection ap-
proach, or adapting techniques for optimizing morphological filter-
ing to 3D [Weiss 2006].

In addition, we would like to extend this work to other styles of
illustration beyond watercolor, such as charcoal or pastel. In our
experiments so far, we have found that the more “structured” the
appearance of the medium’s effects, the more objectionable any
distortions due to incorrect optical flow appear. However, these ar-
tifacts might be ameliorated by decreasing the frame rate, and/or
alternating between different versions of texture, as in, for exam-
ple, much of Bill Plympton’s animation.4

Finally, we are interested in seeing how our extensions could now
be re-adapted to improve other domains. Our new advection method
is applicable to scientific flow visualization, thus overcoming some

4http://www.plymptoons.com/



limitations of previous methods. Similarly, our new abstraction
method can be used as a pre-processing step for any type of video
stylization, improving existing stroke-based rendering techniques.
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