Real-time subsurface scattering on the GPU

Eric Bruneton

Antoine Bouthors

Figure 1: Marble statue without (left) and with (right) subsurface
scattering.

Abstract

We present a GPU algorithm that computes subsurface light trans-
port in real time on arbitrary animated meshes. We evaluate both
single scattering and multiple scattering, by using piecewise lin-
ear and ring-based approximations of the surface in the fragment
shader. We demonstrate our technique on animated meshes at 60
fps.

Keywords: scattering, subsurface, GPU, dipole approximation
1 Introduction

Several approaches have been presented to bring [Jensen et al.
2001] to real-time. However, all of these approaches either re-
quire some precomputation (such as scattering links [Carr et al.
2003], discretized precomputed integrals [Hao and Varshney 2004],
mesh-based hierarchy [Mertens et al. 2003b]) or do not reproduce
all the possible features (e.g.,only local scattering and image-based
irradiance maps [Mertens et al. 2003a], planar surface assump-
tion [Mertens et al. 2003a; Francois et al. 2006], single scatter-
ing only [Francois et al. 2006]). We get rid of precomputations
by computing light transport on the fly. We avoid the planar sur-
face assumption by sampling the surface at rendering time at cho-
sen places. We compute multiple scattering using an approximation
suited for the GPU.

Before each frame, we compute a depth map from the light point
of view, recording the depths z; of points on the lit surface. In the
following, we are dealing with the shading of the point p on the
visible surface, for each pixel to render.

2 Single scattering

Geometry has a great influence on single scattering, especially in
highly curved areas (e.g.,face features) and on shadow boundaries.
To account for it, we approximate it by a piecewise linear surface.
We take exponentially spaced samples p; inside the volume along
the view ray and compute the lengths I; of the exit rays towards the
light by reading z; (p;) (fig. 2, left). We assume the surface is planar
between each sample. We integrate the single scattering equation
analytically on the GPU for each segment.

3 Subsurface scattering

To evaluate subsurface scattering, we need to integrate

I(z)R4(|lp — z||)dx over the neighboring surface of p,
where T is the irradiance function and R4 the subsurface light
transport function [Jensen et al. 2001]. This can also be done on
the GPU, in a Monte-Carlo manner: we evaluate I(x;) using the
shadow map z;(x;) and compute Ry(||z — z;||) on the GPU, for

Fabrice Neyret Nelson Max

Figure 2: Left: Single scattering. Right: Multiple scattering. Inte-
gration over the rings smoothes the shadow boundaries.

a set of samples x; chosen using importance sampling. However,
while this is feasible on the latest graphics hardware, it requires too
many texture accesses on low-end GPUs.

To accelerate the process, we rely on the fact that Rq(||p — z||)
is constant for all = on a ring around p. We compute Rq(r;) for
a set of concentric rings ¢ of radius r; around p (fig. 2, right). We
evaluate I; for each ring 7 by taking advantage of MIP-mapping: the
integral of a value over a square ring is the difference between two
MIP-map levels. Here we need to MIP-map the result of a shadow
map comparison. We rely on Variance Shadow Maps [Donnelly
and Lauritzen 2006].

4 Implementation and Results

Figure 1 and the accompanying videos show the effect of using our
method vs. standard BRDF rendering on a marble model. One
can see that the light passes through the thin parts of the model
and shadow boundaries are smoother. We implemented both the
sample-based and the ring-based technique. Framerate varies be-
tween 30 and 100 FPS on 1K-20K triangles models on an nVidia
G80 in 800x600 (75% of the screen filled) for the ring-based
method and 50% slower for the sample-based method with 30 sam-
ples per pixel. The main limitation is on quality. Due to the use of
shadow maps, one can sometimes see aliasing artifacts and Mach
bands on the ring-based method. The sample-based method is less
prone to these problems but is subject to noise if too few samples
are used.

5 Conclusion and Future Work

Our technique shows subsurface scattering on arbitrary animated
meshes in real-time and allows for the animation of the light
source(s) and viewpoint. This work is fully compatible with tex-
tures and the next obvious step is to apply the texturing method
from [Jensen et al. 2001], which is straightforward. Using mul-
tilayered materials and textures would definitely improve realism.
The quality of the rendering (less aliasing) should also be improved.

References
CARR, N. A., HALL, J. D., AND HART, J. C. 2003. GPU algorithms for radiosity
and subsurface scattering. In Graphics Hardware’03, 51-59.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow maps. In /13D’06,
161-165.

FRANCOIS, G., PATTANAIK, S., BOUATOUCH, K., AND BRETON, G. 2006. Subsur-
face texture mapping. In SIGGRAPH Sketches’06, 172.

HAo0, X., AND VARSHNEY, A. 2004. Real-time rendering of translucent meshes.
ACM Trans. Graph. 23,2, 120-142.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. 2001. A
practical model for subsurface light transport. In SIGGRAPH’01, 511-518.

MERTENS, T., KAUTZ, J., BEKAERT, P., REETH, F. V., AND SEIDEL, H.-P. 2003.
Efficient rendering of local subsurface scattering. In Pacific Graphics’03, 51.

MERTENS, T., KAUTZ, J., BEKAERT, P., SEIDELZ, H.-P., AND REETH, F. V. 2003.
Interactive rendering of translucent deformable objects. In EGRW’03, 130-140.

