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Figure 1: Marble statue without (left) and with (right) subsurface
scattering.

Abstract

We present a GPU algorithm that computes subsurface light trans-
port in real time on arbitrary animated meshes. We evaluate both
single scattering and multiple scattering, by using piecewise lin-
ear and ring-based approximations of the surface in the fragment
shader. We demonstrate our technique on animated meshes at 60
fps.
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1 Introduction

Several approaches have been presented to bring [Jensen et al.
2001] to real-time. However, all of these approaches either re-
quire some precomputation (such as scattering links [Carr et al.
2003], discretized precomputed integrals [Hao and Varshney 2004],
mesh-based hierarchy [Mertens et al. 2003b]) or do not reproduce
all the possible features (e.g.,only local scattering and image-based
irradiance maps [Mertens et al. 2003a], planar surface assump-
tion [Mertens et al. 2003a; Francois et al. 2006], single scatter-
ing only [Francois et al. 2006]). We get rid of precomputations
by computing light transport on the fly. We avoid the planar sur-
face assumption by sampling the surface at rendering time at cho-
sen places. We compute multiple scattering using an approximation
suited for the GPU.

Before each frame, we compute a depth map from the light point
of view, recording the depths z; of points on the lit surface. In the
following, we are dealing with the shading of the point p on the
visible surface, for each pixel to render.

2 Single scattering

Geometry has a great influence on single scattering, especially in
highly curved areas (e.g.,face features) and on shadow boundaries.
To account for it, we approximate it by a piecewise linear surface.
We take exponentially spaced samples p; inside the volume along
the view ray and compute the lengths I; of the exit rays towards the
light by reading z; (p; ) (fig. 2, left). We assume the surface is planar
between each sample. We integrate the single scattering equation
analytically on the GPU for each segment.

3 Subsurface scattering

To evaluate subsurface scattering, we need to integrate

I(z)R4(|lp — z||)dx over the neighboring surface of p,
where T is the irradiance function and R4 the subsurface light
transport function [Jensen et al. 2001]. This can also be done on
the GPU, in a Monte-Carlo manner: we evaluate I(x;) using the
shadow map z;(x;) and compute Ry(||z — z;||) on the GPU, for
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Figure 2: Left: Single scattering. Right: Multiple scattering. Inte-
gration over the rings smoothes the shadow boundaries.

a set of samples x; chosen using importance sampling. However,
while this is feasible on the latest graphics hardware, it requires too
many texture accesses on low-end GPUs.

To accelerate the process, we rely on the fact that Rq(||p — z||)
is constant for all = on a ring around p. We compute Rq(r;) for
a set of concentric rings ¢ of radius r; around p (fig. 2, right). We
evaluate I; for each ring 7 by taking advantage of MIP-mapping: the
integral of a value over a square ring is the difference between two
MIP-map levels. Here we need to MIP-map the result of a shadow
map comparison. We rely on Variance Shadow Maps [Donnelly
and Lauritzen 2006].

4 Implementation and Results

Figure 1 and the accompanying videos show the effect of using our
method vs. standard BRDF rendering on a marble model. One
can see that the light passes through the thin parts of the model
and shadow boundaries are smoother. We implemented both the
sample-based and the ring-based technique. Framerate varies be-
tween 30 and 100 FPS on 1K-20K triangles models on an nVidia
G80 in 800x600 (75% of the screen filled) for the ring-based
method and 50% slower for the sample-based method with 30 sam-
ples per pixel. The main limitation is on quality. Due to the use of
shadow maps, one can sometimes see aliasing artifacts and Mach
bands on the ring-based method. The sample-based method is less
prone to these problems but is subject to noise if too few samples
are used.

5 Conclusion and Future Work

Our technique shows subsurface scattering on arbitrary animated
meshes in real-time and allows for the animation of the light
source(s) and viewpoint. This work is fully compatible with tex-
tures and the next obvious step is to apply the texturing method
from [Jensen et al. 2001], which is straightforward. Using mul-
tilayered materials and textures would definitely improve realism.
The quality of the rendering (less aliasing) should also be improved.
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