
Interactive dynamic objects in a virtual light field

 1/95

Interactive dynamic objects in a virtual light field

Year: 2005

Author: Jamie Wither

Supervisor: Mel Slater

This report is submitted as part requirement for the MSc Degree in Vision, Imaging and

Virtual Environments at University College London. It is substantially the result of my

own work except where explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly

acknowledged.

Interactive dynamic objects in a virtual light field

 2/95

Acknowledgements

I would like to thank Pankaj Khanna and Jesper Mortensen for the many helpful

discussions we had regarding their implementation of the virtual light field. I would also

like to thank Mel Slater for his supervision and guidance while working on this project.

Interactive dynamic objects in a virtual light field

 3/95

Contents
Contents .. 3

1 Introduction... 5

1.1 Global illumination .. 5

1.2 The radiance equation .. 5

1.3 Classifying solutions.. 7

1.3.1 Heckbert notation... 8

1.4 GI methods of solving the radiance equation.. 8

1.4.1 Ray tracing... 8

1.4.2 Radiosity.. 8

1.4.3 Path tracing .. 9

1.4.4 Photon mapping ... 9

1.5 Motivation for and contribution of this project 10

1.6 Approach ... 11

1.7 Scope... 11

1.8 Report structure ... 12

2 Background literature .. 13

2.1 Radiosity ... 14

2.1.1 Computation .. 14

2.1.2 Gathering and shooting .. 15

2.1.3 Meshing ... 15

2.1.4 Altering geometry in Radiosity solutions...................................... 16

2.2 Raytracing ... 19

2.2.1 Scene traversal acceleration schemes.. 19

2.2.2 Optimizing ray tracing ... 21

2.2.3 Dedicated graphics hardware.. 22

2.3 Shadows .. 23

2.3.1 Shadow mapping.. 23

2.3.2 Shadow volumes .. 24

2.4 The Virtual Light Field .. 25

2.4.1 Theory ... 25

2.4.2 Overview of the existing VLF code.. 28

3 Implementation.. 32

3.1 Adding a simple object to the existing scene .. 32

3.1.1 Definition... 32

3.1.2 Wireframe Viewing.. 32

3.2 Moving the object .. 33

3.3 Adding the dynamic object to VLF shading modes 35

3.3.1 Flat shading and occlusion in progressive mode 35

3.3.2 Flat shading and occlusion in coherent mode................................ 38

3.4 Simple shading for the dynamic object... 40

3.5 Casting shadows .. 42

3.5.1 Shadow mapping implementation... 43

3.5.2 Shadow ‘piercing'... 45

3.5.3 Shadow blending.. 45

3.5.4 Removing the reverse projection of the shadow............................ 46

3.5.5 Shadow map resolution .. 47

3.6 Advanced diffuse shading using the VLF... 47

3.6.1 Theory...47

Interactive dynamic objects in a virtual light field

 4/95

3.6.2 Normalising for variation in solid angle in VLF directions. 48

3.6.3 Normalising for the total projected unit cell area over hemisphere 49

3.6.4 Implementation of advanced shading.. 51

3.6.5 Reflections of the dynamic object in the static scene 53

3.6.6 Increasing the number of sample points.. 54

3.6.7 Decreasing the number of sampled directions............................... 55

3.7 Scene energy balance considerations.. 55

3.8 Summary ... 55

4 Results... 57

4.1 Frame rendering times ... 57

4.1.1 Progressive rendering frame times.. 58

4.1.2 Coherent rendering frame times ... 60

4.1.3 Quantitative Summary.. 61

4.2 Qualitative Tests .. 62

4.2.1 Luminance of dynamic diffuse cube ... 62

4.2.2 Colour bleeding for dynamic diffuse surfaces............................... 64

4.2.3 Shadows cast by the dynamic object... 64

4.2.4 Shadows received by the dynamic object...................................... 65

4.2.5 Sampling half the VLF directions... 66

4.2.6 Video ... 66

4.2.7 Qualitative Summary ... 66

5 Conclusions... 68

5.1 Further work .. 69

5.1.1 Specular surfaces ... 69

5.1.2 Static specular occlusion .. 69

5.1.3 Dynamic diffuse occlusion ... 70

5.1.4 Hard shadow reflections... 70

5.1.5 Soft shadows.. 70

5.1.6 Importance sampling.. 70

5.1.7 Caching.. 70

5.1.8 Exploit coherence in diffuse gathering.. 70

5.1.9 Parallel processing ... 71

5.1.10 OpenGL light parameter estimation.. 71

5.1.11 Receiving hard shadows during basic shading 71

6 Bibliography.. 72

Listing 1 Cube definition .. 75

Listing 2 Low quality progressive mode including dynamic object 77

Listing 3 High quality progressive mode including dynamic object................. 82

Listing 4 Preserving correct surface normals after object motion..................... 85

Listing 5 Shadow mapping implementation .. 86

Listing 6 Triangular subdivision code ... 90

7 Accompanying CD-ROM disc... 95

Interactive dynamic objects in a virtual light field

 5/95

1 Introduction
Computer graphics is a young field concerned with visually representing aspects

of the real world or human imagination to human users. Since the early 1960s computer

technology has progressed from representing simple monochrome points, lines and

shapes on a single 2D display panel to complex 3D objects in millions of colours,

projected onto multiple large screens and viewed in stereo through head mounted eye

pieces. As these visual display systems have progressed in complexity so have the

methods of creating the data to display on them. It is now possible to synthesize static

2D images representing a view of the real world which is indistinguishable from a

photograph of the real view. Such techniques are useful in visualisation applications

where a user wishes to study the visual effects of changes they couldn’t make in the real

world without a great expenditure of time or money, for example architectural

visualisation or prototyping complex mechanical products such as automobiles. More

useful still would be the ability to instantly move the virtual camera around such virtual

scenes and view it interactively from many different angles. This too is currently

possible – but under a large set of constraints (the number of constraints is being

reduced as the field progresses).

Light is the starting point for human visual perception and global illumination is

the field concerned with modelling the way light propagates in the real world. These

models approximate the way light would be distributed in the real world for a given

scene description and allow the recreation of existing views or the creation of

completely imagined scenes as they would appear in the real world.

This project extends a particular model for approximating global illumination, a

Virtual Light Field (VLF)[2]. This model is well suited for interactive viewing of a

static scene. This project extends the existing implementation to allow the addition of a

dynamic object to the scene. This object can be moved within the scene in real-time and

will be illuminated and change the illumination on existing objects within the scene

according to the light distribution contained within the model. Where the object cannot

be illuminated realistically at real-time frame rates approximations are made to maintain

interactivity.

1.1 Global illumination

The name global illumination (GI) indicates that models of this type take into

account light in a scene due to object interreflections in some way. Global illumination

solutions include light arriving at an object directly from primary light emitters such as

light bulbs (direct light) and also light arriving via reflections of light from other objects

in the scene (indirect light). It is the recursive nature of the problem that makes it

complex to solve. A local illumination solution only considers the direct effects of light

emitters on objects in the scene and does not consider the light hitting objects due to

reflections from other objects. This can be considered in more detail after defining a

vocabulary for discussing the field. This starts with a discussion of the radiance

equation. For further detail see [3] and [10]. The discussion below proceeds along the

lines of Chapter 3 from [3].

1.2 The radiance equation

Light energy is carried by particles called photons which travel in a straight line

with speed c (3*10
8
ms

-1
) in a vacuum. The amount of energy flowing through a surface

per unit time is called flux. It is measured in units of Watts (W) and denoted by the

Interactive dynamic objects in a virtual light field

 6/95

symbol f. We can think of the flux as the flow of photons per unit time. The energy

carried by a photon is related to the frequency of its related light wave by the Einstein

relation E=hf where h is Planck’s constant. In perceptual terms the frequency

corresponds to the colour of light. However for the purposes of our discussion we will

consider light of just one frequency and drop the dependency from the equations.

Consider the total flux of photons in an arbitrary volume where the perceived

levels of illumination are constant. Photons may travel through the volume without

interaction (streaming). They may be reflected from a surface within the volume (out-

scattering). They may be absorbed by materials in the volume. Photons may enter the

volume from outside (in-scattering) or they may be emitted from surfaces within the

volume itself. If we apply the law of conservation of energy (which is a constraint in the

real world and thus applies to light) then we realise that the total energy leaving the

volume must equal the energy entering the volume plus any energy emitted within the

volume minus any energy absorbed within the volume. This can be formulated as:

Emission + in-scattering = streaming + out-scattering + absorption (Eq 1)

Each of the terms in the equation above can be represented as integrals of

probabilities of the various events occurring over the appropriate domains of volume,

set of directions of interest and surface area of the volume. The common term to each

integral is (,)pφ ω , the flux at point p (in the volume) in direction ω . So if we know

(,)pφ ω we can solve this integral and we have a complete description of the light in the

scene (see sect 3.2 of [3] for further detail). We can then use this description to render

an image of the scene from any viewpoint. Finding a set of approximations for the

values of (,)pφ ω is what global illumination solutions try to achieve. In order to

simplify determining the solution a number of assumptions are made:

1. Wavelength independence. Photons of different wavelengths do not

interact (i.e. no fluorescence).

2. Time invariance. Any solution remains valid as long as the content of the

scene does not change. (i.e. no phosphorescence)

3. No participating media. We assume light is travelling in a vacuum. This

restricts light interactions to occur only at object surfaces. However some

advanced solutions allow the simulation of participating media.

4. Object materials are isotropic. The relationship between the incident and

reflected direction of light is the same over the whole surface.

In computer graphics it is not flux but a derivative of flux called radiance which is

of most interest. Radiance is defined as flux leaving a surface, per unit projected area of

the surface, per unit solid angle of direction and is denoted by the symbol L. The unit of

radiance is W/m
2
/sr. sr is a steradian, the unit of solid angle. Radiance is constant along

the length of a ray of light. Closely related is the concept of radiosity which is defined

as the total power leaving a point on a surface, per unit area on the surface and is

denoted by the symbol B. It has units of W/m
2
 and can be determined by integrating the

radiance in all directions over the hemisphere above a point on a surface. From equation

1 after applying the above and additional simplifying assumptions it is possible to

derive a new equation expressed in terms of radiance rather than flux. This equation is

known as the radiance equation as is expressed as follows:

Interactive dynamic objects in a virtual light field

 7/95

(,) (,) (, ,) (,)cose i i i iL p L p f p L p dω ω ω ω ω θ ω
Ω

= + ∫

Where the terms are:

(,)L p ω the radiance leaving a point p in direction ω

(,)eL p ω the radiance emitted by the surface at point p in direction ω

(...) idω
Ω
∫ an integral over the hemisphere of incoming directions above point p

(, ,)if p ω ω the bi-direction reflectance distribution function (BRDF). A term

which relates the reflected radiance at point p in direction ω to the incoming radiance

in direction iω

(,)iL p ω the incoming radiance from direction iω

cos iθ the cosine of the angle between the surface normal and the incoming

direction. Due to the projection of the surface area along the radiance direction.

The equation neatly expresses that radiance is the sum of two terms. The radiance

emitted at that point (if any) (,)L p ω and the amount of radiance reflected at that point.

The reflected radiance is computed as the sum over all rays arriving at point p

multiplied by the BRDF of the surface. This is the second term on the right hand side of

the radiance equation.

The term we wish to compute – the radiance L - appears on both sides of the

equation, thus making it difficult to solve. In practice it can rarely be solved analytically

and so numerical methods are used. There follows a summary of four approaches to

solving the radiance equation and a discussion of their merits.

1.3 Classifying solutions

When we consider the process of creating a series of 2D images from the solution

to the radiance equation we realise that for any particular image in the series we only

require the solution for those rays which enter the eye. Such a solution is view-

dependent. If the eye looks

elsewhere in the scene then the

equation needs to be resolved for the

new set of eye rays. This can lead to

a variable frame rate as some sets of

rays will be more expensive to solve

than others. View-independent

solutions attempt to solve the

equation for all surfaces in the scene

in as many directions as possible

ahead of time. So when an image is

generated the solution for the

required rays has been pre computed

and can be looked up. This has the

advantage of providing a constant

frame rate – but requires a long

Figure 1 From Heckbert [1]. (L)ight. (S)pecular.

(D)iffuse. (E)ye. See text.

Interactive dynamic objects in a virtual light field

 8/95

resource intensive pre-computation step.

1.3.1 Heckbert notation

Heckbert [1] introduced a useful notation for discussing light paths in GI

solutions, illustrated in Figure 1. The notation is a shorthand indicating events along the

complete path of a particular ray. For example a ray which left a light source, bounced

off two diffuse surfaces and then entered the eye would be LDDE (Figure 1). L –

emitted from light, D – bounce off diffuse surface, S – bounce off specular surface. This

can be combined with regular expression notation to provide expressions such as

L(S|D)*E: a ray which leaves the light and encounters 0 or more specular or diffuse

surfaces in any order before entering the eye. L(S|D)*E solutions are the ideal for GI

solutions because they model both specular and diffuse rays. However they are also the

most costly.

1.4 GI methods of solving the radiance equation

Figure 2 Ray tracing (left). Radiosity (right)1.

1.4.1 Ray tracing

Ray tracing restricts the solution to consider only perfect specular surfaces (in a

global sense) and point light sources. This reduces the number of rays the solution must

calculate. In scenes with only one light source each point on each specular surface in the

scene will have only one incoming (from the eye) and one outgoing (to the light) ray

direction. Diffuse surfaces are only approximated using direct (no inter-reflections

accounted for) light. Rays are traced from the eye into the scene and bounce recursively

from specular surfaces until some pre-determined depth or until the contribution to the

light perceived by the eye is negligible. This is an ES*DL solution and is view

dependent. Ray traced scenes (Figure 2, left) have a classic ‘computer generated’ look

about them as real scenes don’t contain large numbers of perfect specular surfaces and

they don’t account for diffuse inter-reflective effects such as colour bleeding and soft

shadows.

1.4.2 Radiosity

Radiosity can be considered as the complement to ray tracing in that it restricts the

scene to containing perfect diffuse surfaces only and no specular surfaces (Figure 2,

right). This eliminates all directional aspects of the radiance equation so it can be

1 Images courtesy of Henrik Wann Jensen. (http://graphics.ucsd.edu/~henrik/images/cbox.html)

Interactive dynamic objects in a virtual light field

 9/95

reformulated in terms of radiosity. A time consuming pre-computation step then begins.

The geometry of the scene is subdivided into patches. The light emitters in the scene are

given initial radiosity values. The method iterates through every patch in the scene

emitting the radiosity energy of the patch to all the other patches in the scene until the

solution converges. The energy is distributed among all the surfaces of the scene and

doesn’t depending on viewing position and so the method is view independent. This

means that once the pre-computation is complete these scenes can be rendered in real

time for walk through purposes. However with this solution in its basic form no part of

the scene can be changed without re-computing the entire solution again. The light paths

represented are LD*E.

There are a large number of variations to basic radiosity and the VLF approach

(explained in detail later) can be considered to be one of them.

1.4.3 Path tracing

Figure 3 Path tracing (left). Photon Mapping (right)
2
.

Path tracing is similar to ray tracing. Rays are traced into the scene from the eye,

but instead of terminating on diffuse surfaces the BRDF function of each surface is

sampled and suitable reflected direction is chosen to recurse along. Path tracing thus

allows both diffuse and specular surfaces and mixtures of the two. It is a stochastic

solution to the radiance equation and requires many primary rays to be traced per image

pixel, to reduce sampling error to the point where the image isn’t overly noisy. It is

view-dependent and more expensive than ray tracing per image but produces much

more realistic images than either ray tracing or radiosity alone. The paths traced are

E(S|D)*L. The solution includes both soft shadows and colour bleeding (Figure 3, left).

1.4.4 Photon mapping

One of the most complex issues in radiosity solutions is how to efficiently divide

the scene geometry into patches for best computation time and visual effect. The VLF

avoids this issue (see later) as does photon mapping (Figure 3, right). Photon mapping

[40] adopts the photon rather than the light ray as the basic unit of energy transport. In a

pre-computation phase photons are emitted into the scene from the light sources and

reflected off both diffuse and specular surfaces until they are absorbed. The position and

direction of the photon is then recorded in an efficient spatial subdivision structure

called a KD-tree. Different density maps are used to record different types of path. In

2 Images courtesy of Henrik Wann Jensen. (http://graphics.ucsd.edu/~henrik/images/cbox.html)

Interactive dynamic objects in a virtual light field

 10/95

particular, caustics (the effect of a sharp beam of light hitting a diffuse surface and

being reflected into the eye) are caused by LS*D paths and require a high density

photon map for their representation. A lower resolution global map is used to store

L(S|D)* paths. During the rendering phase the contributions of different types of

radiance is calculated separately for the eye position using path tracing and information

from the photon maps. The solution is thus ultimately view-dependent, as some

calculation is left until the rendering phase. Research demonstrating real-time dynamic

GI solutions based on photon mapping is available [40].

1.5 Motivation for and contribution of this project

The Virtual Light Field implementation for global illumination [2] provides a

good approximation of the physically correct distribution of direct and indirect light

rays in a static scene consisting of perfect diffuse and perfect specular surfaces. The

existing implementation allows walkthough of this scene at interactive rates (15-20

frames per second (FPS)). However it has no support for changing the geometry of the

scene without having to re-propagate all of the light.

A useful addition would be the ability to add movable objects to the scene, so as to

provide a basic mechanism for interaction. An example application for this would be in

Virtual Reality experiments, where the subject may have to interact with the scene in

some way, perhaps by picking up and moving an object. Studies suggest that in such an

experiment a higher level of immersion
3
 can aid the subject in their task [12]. This

makes global illumination a natural choice for rendering static textures for scenes in

such virtual experiments. Researchers often desire that a Virtual Environment induces a

sense of presence [11] in a subject, so that the subject’s responses to the environment

are the same as they would be in the real world. A greater level of immersion may

contribute to sense presence [12].

By extending the GI walkthrough implementation of the VLF to support

realistically shaded dynamic objects we can allow a greater degree of realistic

interaction within the scene. However frame rate is more important to presence than

shading realism [13]. To approach interactive frame rates the changes to the light in the

scene due to object motion will have to be approximate. Also for the purposes of our

example VR experiment the changes should be those most useful for understanding the

relationship between objects in the scene. In particular shadows [15] and inter-

reflections are good clues to depth and contact between objects in a scene. These are

useful even when they are very crude approximations [14].

Section 2 provides a review of literature covering dynamic changes in globally

illuminated scenes. Many of these techniques try to find the nearest approximate

solution to the correct one for a general scene in the least time (or for a desired frame

rate). This is a difficult and computationally expensive task. Rather than starting with an

attempt to find a complete general solution to this problem for the VLF, my approach is

to work towards greater realism in stages. This way we gain insight into how much

processing time different techniques take, how much realism a technique adds and how

much is required for a ‘believable’ moveable object. Also, given the time constraint of

the project, this method ensures that code with some degree of usefulness is available

upon completion.

3
 Immersion is a description of the fidelity of a virtual environment to physical reality and is a

function of the technology used. Realistic visuals in a VE contribute to a higher level of immersion.

Interactive dynamic objects in a virtual light field

 11/95

The contribution of this project is to extend the existing VLF implementation to

support additional movable diffuse geometry, which casts and receives shadows and is

shaded to different degrees of physical correctness using information from the VLF.

The implementation can achieve interactive rates for simple geometry on a modern

desktop PC.

1.6 Approach

A set of progressively more complex objectives were planned and executed for

this project:

1. Render a simple flat shaded dynamic object (a cube) in the VLF by mixing z-

buffer information using OpenGL.

2. Add keyboard controls for moving this object within the scene.

3. Allow the object to cast shadows into the scene. This is a significant depth cue.

4. Shade the object as though it has a diffuse material using a simple

approximation of the emitters in the scene.

5. Shade the object as though it has a diffuse material using light incident on the

object taken from the VLF.

Potential alternative approaches and the justification for each choice of approach

are examined in the relevant sections of this report. The scope is of the project is

restricted to adding dynamic objects to the scene – not changing the position of existing

static geometry. These dynamic objects will be translated and rotated only, no scaling or

distortion of the geometry is considered.

1.7 Scope

The constraints of the existing VLF implementation are:

1) Geometry consists entirely of planar polygons

2) Surfaces have either perfect diffuse or perfect specular properties

3) All surfaces are static during walkthrough

The existing implementation provides between 1-20 frames per second during

walkthrough on a dual processor PC
4
 depending on the content of the VLF scene and

the rendering mode. In the fastest mode (coherent see Section 2.4.2.2.4) 20 FPS is

possible. My aim will be to add at least one user controlled dynamic object which

conforms to constraints 1 and 2 to existing VLF scenes. Such objects should render

within a small fraction (10-20%) of existing frame render times
5
 to be considered

‘interactive’. These objects should affect the appearance of the scene in a realistic

manner (shading, shadows). Approximations of the ‘correct’ global illumination

solution are acceptable where the approximation doesn’t cause an observer to judge the

scene as too unrealistic. This is a subjective judgement discussed further in the results

section.

4
 Dual Xeon 1.7 GHz workstation

5
 The test platform is of a lower specification than footnote 4, and so we consider frame times

relative to the rendering times on the test platform. The test platform is a single processor CPU PC

specified in the results section.

Interactive dynamic objects in a virtual light field

 12/95

1.8 Report structure

In Section 2 the background literature leading to this work is discussed to place

the problem in context. Section 2.4.2 outlines in detail the functionality of the pre-

existing C++ code base for propagation and walkthrough of VLFs which provides the

context for the further code modifications I will present. Section 3 describes each step

of the implementation, from an initial high level of detail down to the algorithms and

code used for each. Section 4 is a summary of the results achieved with the new code

and includes screenshots and timing details of the implementation. Section 5 draws

together the conclusions and further work arising from this report. Section 6 is the

bibliography followed by appendices of detailed code listings. The full code of the

project is supplied on the attached CD-ROM disc.

In this section we have outlined the basics of global illumination and the

motivation for and contribution of this project. The next section expands upon the basic

methods of calculating global illumination, the approaches taken to allow changes to

global illumination solutions, methods of approximating shadows and the existing work

on Virtual Light Fields.

Interactive dynamic objects in a virtual light field

 13/95

2 Background literature
The virtual light field and its historical context is explained in detail in [1]. An

application of the VLF to non-real-time dynamic ray tracing is outlined in [4]. However

there is no existing literature on dynamic changes to a globally illuminated scene using

the VLF approach.

As outlined in Section 1.3, GI solutions fall into one of two main categories:

view-independent solutions which require an expensive pre-computation stage and yield

a static solution for one arrangement of lights and geometry in the scene (such as

radiosity); or view-dependent solutions which calculate the solution for rays currently

visible to the eye only (such as ray tracing). Recently, more complex hybrid approaches

have appeared which attempt to marry the best features from both (photon mapping).

Research which addresses the issue of real-time dynamic updates to geometry in

GI solutions takes an approach appropriate to the type of solution they extend, and thus

also falls broadly into two categories.

For view-independent solutions, the approach is to consider changing only the

affected portions of pre-computed GI solutions, in real-time, as the scene changes. For

example, only re-propagating light for affected patches within radiosity solutions.

For view-dependent solutions, the approach is to speed up the basic operations of

the solution to the point where real-time frame rates may be sustained. Speed ups may

be through optimization of existing algorithms for a particular hardware platform,

parallelization of the operations for distribution among more processors or acceleration

structures which reduce the number of operations required. Approaches in one area will

often be of benefit in another area, as the basic problem tackled by both categories is the

same (propagating light).

Figure 4 - In game images from Half Life 2
6
 (Courtesy of gamespy.com)

The methods outlined so far all attempt to find a close approximation of the

physically correct distribution of light within a scene, given certain simplifying

assumptions. When the intended use of these methods is to provide a view into a virtual

world for a human user, then coarser approximations can be used – sacrificing physical

correctness of the view for something perceptually acceptable, which maintains an

acceptable frame rate. Modern First Person Shooter (FPS) computer games are a good

6 Copyright Valve/Sierra 2005

Interactive dynamic objects in a virtual light field

 14/95

example of this. Figure 4 taken from Half Life 2 illustrates this. Static game geometry is

pre-rendered using a GI solution and used during runtime as either flat textures or input

into real time lighting equations. The soft shadow cast by the bridge is an example of a

pre-rendered texture. The ripples and reflections in the water surface are updated

accordingly as the viewpoint changes. In-game characters cast real-time blurred hard

shadows onto the floor plane. Such approximations lead to a believable real-time

dynamic environment without requiring a full GI solution in real-time.

This section of the report will consider prior work which:

• Considers the problem of dynamic geometry in pre-computed GI solutions

such as radiosity

• Considers the problem of accelerating view dependent methods such as

ray tracing to real-time rates

• Outline different methods of quickly approximating important GI features

such as shadows

Each of these areas informs some part of the dynamic implementation of the VLF

outlined later in this report. This will be noted where relevant. The existing

implementation of the VLF is explained in more detail at the end of this section.

2.1 Radiosity

Radiosity [5] was introduced in Section 1.4.2. This method models only diffuse

interactions and allows only static scenes. The VLF method can be considered to be a

particular type of radiosity method which also allows specular surfaces. Here we discuss

the major aspects of the radiosity method and how they compare to the VLF method.

2.1.1 Computation

In order to distribute light energy the scene geometry is divided into a number of

patches n. Each patch has an area A and radiosity B. The formula relating the radiosity

of one patch to all the other patches in a scene is:

1

n

i i i i i j ji j

j

B A E A B F Aρ
=

= + ∑

Where the terms are:

|i jB B radiosity of patch i or j

|i jA A area of patch i or j

iE emission of patch i

iρ reflectivity of patch i

1

(...)
n

j=

∑ sum over all n patches in the environment

jiF the form factor between patch j and patch i

Interactive dynamic objects in a virtual light field

 15/95

The form factor is an important geometrical quantity which represents the fraction

of power leaving patch j that is received by patch i. Calculation of these form factors

solves the visibility problem for each patch in a scene. This calculation is commonly

solved by projecting every other patch in a scene onto the 5 subdivided faces of a

hemicube placed above the patch in question. The fraction of hemicube surface area

covered by the projected patch gives the form factor between the two patches. This

relationship is reciprocal so that j ji i ijA F A F= . This solution is an approximation of the

form factor suggested by the Nusselt analogy which recognizes that the form factor is an

integral over the solid angle subtended by the sending patch on a unit hemisphere above

the receiving patch. Calculation of form factors for a scene is an O(n
2
) operation as each

patch needs to consider every other patch. We can use the reciprocity of form factors

and divide the original equation by A to derive a new formula:

1

n

i i i j ij

j

B E B Fρ
=

= + ∑

This formula can then be expressed in a matrix form and solved. The most expensive

operation in radiosity (and GI in general), is determining the visibility between different

points within the scene. In radiosity this translates to calculating the form factors. For

the VLF this translates to finding the intersection area of projected radiance from

sending cells on receiving cells via clipping (see 2.4.1.2). Because form factors are

geometrical terms any change in the geometry has an effect on them, and thus changes

to the geometry require expensive re-computations to the solution. Similarly, visibility

calculations in the VLF are expensive and so approximations are used to allow dynamic

objects (see 3.6).

2.1.2 Gathering and shooting

The matrix expression of the radiosity problem was initially solved using the

Gauss-Siedel method. This method considers each patch in turn as a receiver of energy

and ‘gathers’ the radiosity from all other patches for that patch. However this method

means that in order to produce a complete image of the scene every patch in the scene

must be solved at least once. For interactive purposes it would be preferable to provide

the users with a scene image as soon as possible. This can be achieved through

progressive refinement (PR) [7]. Instead of gathering the light from all patches for each

patch in turn, the progressive refinement method ‘shoots’ radiosity from each patch in

turn to all other patches in the scene. So with n patches in a scene only O(n) operations

are required before an image of all patches (albeit a low quality one) is available rather

than O(n
2
). The PR method also orders the operations so that patches which make large

contributions of radiosity to the scene are calculated first – this providing a quick

convergence to the correct solutions. Finally at iteration PR estimates an ambient light

term that depends on the remaining unshot radiance in a scene. This ambient term is

added to displayed patches to provide an approximation to the final solution before

convergence.

2.1.3 Meshing

The visual quality of a radiosity solution increases with the number of patches

used in the light distribution mesh. Low resolution meshes exhibit artefacts such as light

and shadow leaks and staircase effects, among others.

Interactive dynamic objects in a virtual light field

 16/95

Figure 5 Uniform mesh subdivison may exhibit artifacts
7

Increasing the resolution of the mesh by further subdivision reduces these effects,

but a greater number of patches in the mesh requires much greater memory and

processing overhead. Adaptive subdivision [8] is a technique which addresses this by

only subdividing the mesh where the gradient in light distribution between patches is

large. This provides the extra resolution where it is needed and leaves fewer, larger

patches in the mesh where it is not. Discontinuity meshing [9] is a technique where the

mesh is generated according to the predicted location of discontinuities. Both of these

techniques add complexity to the scene description and increase the time taken to arrive

at a solution but deliver a higher quality.

Figure 6 Adaptive subdivision addresses uniform subdivison artifacts
7

The VLF method does not require any complex meshing calculations. Surfaces in

a VLF are uniformly subdivided into cells which accumulate radiosity during the light

propagation phase. These cells can be applied to the surfaces as diffuse textures during

the visualisation of the solution.

2.1.4 Altering geometry in Radiosity solutions

As mentioned previously, Radiosity in its basic form models only diffuse

interactions and allows only static scenes. A good summary of research addressing these

limitations is available section 3 of [6]. A brief summary this research follows.

2.1.4.1 Incremental Progressive Radiosity (IPR)

IPR was proposed independently by two different groups [23], [24] and extends

the concept of progressive radiosity (see above). IPR was designed to allow changes to

7 Images from [10]. Originally courtesy of J. Wallave, 3D/Eye, Inc.

Interactive dynamic objects in a virtual light field

 17/95

geometry in Radiosity solutions without a full re-computation of the solution. IPR

extends basic radiosity by allowing attributes of patches to be changed during a

continuous computation of the solution. The difference between the patches previous

and new values is calculated and then propagated from the changed patch in the usual

way. In this way, if a light is turned down or off then negative energy is propagated into

the scene until convergence. Figure 7 (A) is the solution cycle for progressive radiosity.

Figure 7 (B) is the new cycle for IPR.

Figure 7 (A) Solution cycle for progressive radiosity. (B) Cycle changed for incremental PR. (C&D)

Only the form factors for the affected portion of the hemi-cube are recalculated
8
.

The geometry position can also be changed by using a similar incremental method

for form factors. Only patches which can see the geometry changes need incremental

form factors recalculation. As form factor calculation is expensive, only the portion of

the hemi-cube affected by the change is recalculated. This is illustrated in Figure 7 (C &

D). Both are views of a hemi-cube face as seen by a shooting patch. Only the dashed

area needs to be considered for form factor recalculation.

2.1.4.2 Dynamic Hierarchical Radiosity (DHR)

DHR [26] is an extension of hierarchical radiosity (HR) [25]. HR extends basic

radiosity by constructing a hierarchical presentation of the form factors in the scene.

Polygons in the scene are adaptively subdivided into elements using a quad-tree. The

form factor between elements belonging to different trees are estimated. If they fall

below a user supplied threshold then a link between elements is established. These links

are used to propagate radiosity between elements in the hierarchy, and radiosity is

pushed up and down within each tree. The advantages of this approach are that the links

have the same radiometric significance and that - at most - O(n) form factors are

required (as opposed to O(n
2
) for the basic implementation).

8 Images courtesy of [23]

Interactive dynamic objects in a virtual light field

 18/95

Figure 8 On the left, two plane walls at right angles (thin lines are geometry). The thick lines are

elements. The hierarchy is express in the position of elements. The right diagram shows the links

between elements
9
.

DHR extends HR by making the assumption that objects are not created or

destroyed and then considering the possible interactions between form factors as an

object moves. Movement will alter the occlusion between elements, and so form factors

associated with links may be modified or set to zero (but retained in case the occlusion

is removed later). If polygons move towards each other, the form factors increase and so

elements may need to be further subdivided and new links created lower in the

hierarchy. This is known as demoting a link. If polygons move away from each other,

the form factors decrease, and so links may also be promoted to higher in the hierarchy.

DHR proceeds by predicting which links will be affected in the next frame of the

dynamic scene and updating only those links; and then using an iterative solver based

on the previous solution to solve the new situation.

 Though results from this method are encouraging, it doesn’t deal well with

discontinuities and lacks an efficient mechanism to identify which parts of the scene

changed while maintaining a quality/time tradeoff. The line space hierarchy approach

outlined next addresses these shortcomings.

2.1.4.3 Line-Space Hierarchy

LSH [27] provides a mechanism to control the quality vs time trade-off in DHR

by using shafts to represent the sets of line segments joining elements in the hierarchy.

Traversal of this line-space allows modified links to be rapidly identified. It also reduces

the amount of work required to solve the new hierarchical system at each frame.

2.1.4.4 Unified Hierarchical Algorithm (UHA)

Granier et al. enhanced the best of these approaches to include the specular effects

of light in a Unified Hierarchical Algorithm [28]. This added stochastic particle

shooting to determine the specular light paths and separated the diffuse and specular

path information. It allows object motion by re-emitting a small percentage of particles

for each new position. A space division scheme is used to quickly identify affected

particle paths. Image quality is degraded during motion, but a high quality image is

generated when the scene is static again. This is similar to the progressive rendering

mode of the VLF walkthrough.

9 Diagram courtesy of [26]

Interactive dynamic objects in a virtual light field

 19/95

2.2 Raytracing

The approaches above concentrate on areas of change in a pre-computed solution

to reduce processing time. The opposite approach is to speed up basic operations to the

point where no pre-computation is required. In this approach all the rays reaching the

eye are sampled once or more to produce an accurate rendering of the scene. The basic

operation for visibility in GI methods is ray tracing. If this operation can be accelerated

to the point where the set of required rays can be completely solved within the time

allotted for an individual frame, then the solution can be recomputed completely each

frame and no special processing is required to move scene geometry or change lighting

parameters.

Similarly, reducing the number of rays which need to be calculated would reduce

the processing time per frame. Ray/Space division schemes are one method of reducing

the number of intersection tests required per frame. The following sections outline

research along these lines.

2.2.1 Scene traversal acceleration schemes

In its most primitive form, ray tracing performs an intersection test for the ray in

question with each object in the scene. Because objects occlude one another usually

only the nearest intersection is required. Any method which helps identify the nearest

intersecting object can reduce the number of intersection tests required per ray. One

approach is to subdivide the space of the scene and record which objects occupy each

partition of the space. Then the ray is traversed from its origin, testing only the objects

which lie on its path. Regular grids, hierarchical grids, BSP-trees, octrees and bounding

volumes are all variations of this approach.

2.2.1.1 Bounding Volumes

Figure 9 On the left is shown volume 20 of the hierarchy and the sub volumes it contains. On the

right are the contents of volume 61, which can be seen within volume 20.10

Rubin and Whitted [31] Suggested representing the object space entirely by a

hierarchical data structure consisting of bounding volumes. Each volume would be a

parallelepiped oriented to minimize its size. All volumes at one level could be tested for

the nearest intersection. That volume is then entered and also traversed. The bottom

level of this tree consists of displayable objects such as planar polygons. Figure 9

illustrates this. As the orientation of each parallelepiped is just a matrix transformation

10 Diagram courtesy of [31]

Interactive dynamic objects in a virtual light field

 20/95

relative to its parent, the whole structure can be stored and traversed efficiently by

translating the ray into each sub volume as required.

2.2.1.2 Space subdivision using grids

Regular grids divide the space equally into regions known as voxels (volume

element). Objects which intersect a volume are recorded as belonging to the voxel. The

ray is traversed from origin through the space. For each voxel it traverses, the

intersecting objects are looked up and the relevant intersections are performed. This

works well for scene where objects are spaced regularly, but performs poorly where

many objects are clustered in a small area of the space. To overcome this, grids can be

created which divide the space more efficiently.

2.2.1.3 Space subdivision using trees

Glassner [29] proposed using an octree data structure to recursively subdivide 3D

space into voxels. If a voxel contained more than a threshold number of objects the

space was further subdivided. Such a scheme leads to deeper trees to recurse, but avoids

traversing many empy cells as could occur in a grid method.

A variation on this is to use a binary space partition (BSP) tree. Instead of

dividing each voxel into 8 smaller voxels choose one cutting plane and divide the space

into two smaller spaces. Do this recursively, until a threshold is reached. This approach

leads to a simple binary decision (which is the nearest side of the tree?) at each level of

the BSP tree, and can be implemented efficiently. A similar cache optimized approach

was used in the VLF to accelerate ray traversal (see Section 2.2.2).

2.2.1.4 Ray classification

Another way to approach the problem is to subdivide the space of rays. Arvo and

Kirk[30] describe an approach which uses the fact that a ray in a 3D space can be

represented by a point in a 5D space. That is a ray is completely described by its origin

(a point in 3D space) and a direction which can be recorded with 2 spherical co-

ordinates (a further 2 dimensions). This 5D space can be subdivided into disjoint

volumes and every object intersected by every ray in each sub-volume is recorded for

that volume (this is the candidate set of objects for this sub-volume). Then when

performing ray intersection first determine which sub-volume the ray belongs to and

determine the closest intersection with the returned candidate set of objects (should

there be one). Early results for this method suggested a factor 8 improvement for a

particular scene rendering over Glassner’s octree space subdivision method.

Interactive dynamic objects in a virtual light field

 21/95

2.2.2 Optimizing ray tracing

Figure 10 (Left) Scene divided by axis aligned BSP tree. (Right) ray traversal cases. a) Ray segment

in front of splitting plane. b) behind splitting plane. c) ray segment intersects both sides
11

.

Wald et al. [32] present a highly optimized ray-tracing implementation. Careful

profiling revealed that in general ray tracers are bound by accessing main memory.

When rays are shot incoherently (as in most global illumination algorithms), main

memory can be accessed almost at random, and so the CPU cache isn’t used efficiently

and performance falls. Wald exploits the coherence of neighbouring rays traveling in

the same direction to reduce main memory access and increase cache efficiency. This is

achieved by considering packets of neighbouring rays traveling in the same direction.

Additionally, cache performance is increased by aligning scene data to the size of cache

lines used by the CPU. This is possible via the use of an axis aligned BSP tree where

child object data can be placed close to the relevant parent data. SIMD (Single

Instruction/Multiple Data) instruction sets (provided by modern AMD and Intel

consumer processors) are used to perform 4 ray intersection tests in parallel. By

restricting primitives to triangles and choosing an optimized barycentric co-ordinate test

for triangle intersection calculations, further speed increases were possible. Wald was

able to demonstrate between factor 11 and 15 speed increases over other popular ray-

tracing engines such as POVray. These techniques were implemented in the triangle

intersection code for the coherent ray-tracing mode of the VLF [2].

As mentioned most rays computed in GI solutions are incoherent. This and other

restrictions imposed on ray-tracing by global illumination means that such impressive

results are hard to achieve for a globally illuminated scene. Wald et al. [37] build on

their previous fast ray-tracing work to present an interactive implementation of GI on a

cluster of PCs. This is achieved by using fast, distributed ray-tracing engine, the idea of

‘instant radiosity’ [35] and a photon mapping stage to provide caustic effects. The idea

behind ‘Instant Radiosity’ is to determine a number of secondary point light sources by

tracing photons from the primary light sources and then determining the indirect

illumination, by casting direct illumination from these secondary point sources. The

photon mapping stage shoots photons towards specular surfaces and reflects them into

the scene until a diffuse surface is hit and the photon is stored in a caustic photon map.

Caustic photon tracing and illumination from point light sources is recalculated each

frame. A client server approach is used for the distributed engine where samples of each

image tile are computed on different machines and then combined with filtering on a

master machine. This means network bandwidth and latency is also a factor in the

implementation. The implementation handles dynamic scenes easily as the scene is

11 Diagram on left from VIVE course notes. Diagram on right from [32].

Interactive dynamic objects in a virtual light field

 22/95

recomputed each frame. Frame rates between 1-5 FPS were demonstrated on a cluster of

16 PCs
12

 without using dedicated graphics hardware.

2.2.3 Dedicated graphics hardware

Recently, improvements in graphics hardware make methods harnessing the

graphics processor unit (GPU) attractive. GPU methods involve identifying parts of the

algorithm where operations can be parallelized and stacked in the graphics pipeline.

Udeshi and Hansen [34] and Keller [35] both propose GI methods which use graphics

hardware to support the CPU. These methods are parallel and require multiple

processors. Recent methods harness the latest generation of consumer GPUs to allow

real-time GI on a single processor supported by a GPU. Radiance Cache Splatting[36]

exploits the theory that the most obvious GI effects are due to the first bounce of light to

produce real-time walkthrough of a GI scene using the GPU on a high end consumer

PC
13

. This extends the concept of radiance caching [38] which uses sparse sampling,

caching and interpolation of incoming radiance to compute GI.

The VLF walkthrough uses the GPU to identify primary eye-ray intersections in

its ray-tracing mode. Currently reading back the pixels from the GPU to the CPU is a

slow operation though which can be a bottleneck to GPU approaches.

Ward et al. [39] demonstrate an interactive moving object in a light-field like

holodeck ray cache structure. This supports full global illumination in non-diffuse

environment rendered using a distributed network. Rays are calculated in parallel when

required and results cached on the server in a holodeck (spatial grid) structure, which

can supply the cached calculations when required. This method assumes ray

calculations are expensive and so worth storing – an approach which differs from Wald

[32], but the method used to light the dynamic object is of interest to us. The lighting is

applied using standard OpenGL where the light parameters are estimated from the

holodeck structure. If the object moves too far from the last light computation, its

parameters need to be recalculated. This approach is used as a first approximation of the

shading on the dynamic objects in this project, but the lighting parameters are set

manually. It is left as further work to estimate suitable lighting parameters from the

VLF.

12

 Dual-Athalon MP 1800+, 512MB RAM each.

13 NVIDIA Quadro FX 3400 PCI-E and a 3.6 GHz Pentium 4 CPU with 1 GB RAM.

Interactive dynamic objects in a virtual light field

 23/95

2.3 Shadows

A powerful cue to an object’s position in a scene are the shadows it casts and

receives. Correct soft shadows arise naturally in radiosity like solutions to GI, and the

VLF is no different in this respect. Soft shadows refer to the fact that shadow has not

only a ‘hard’ central area of constant illumination level (the umbra of the shadow) but

also a ‘soft’ illumination gradient at the edges of the shadow (the penumbra). The static

objects in the pre-propagated VLF scene cast and receive natural looking soft shadows.

To produce shadows the same way for an object added to the existing scene would

require re-evaluating all of the rays in the scene which intersected the object and

modifying their onwards radiance values to account for the occlusion, then calculating

the next object intersected along the ray and reducing the incident radiance accordingly.

These ‘shadow rays’ could then be further propagated into the scene depending on the

surface properties. This is clearly too computationally expensive to achieve in real-time

on a single PC. To achieve a real-time shadow an approximation must be used.

There is a large body of research on shadows [16] and there are a variety of

methods for rendering both hard and soft shadows relatively quickly. Broadly, these

methods operate in either image space or object space methods. In real scenes you never

see pure hard shadows, as they are generated by point light sources and in the real world

all light sources have a finite area which will cause some degree of penumbra in a

shadow. However hard shadow methods are easier to implement and fast soft shadow

methods in general are multipass extensions to the hard shadow methods. So a natural

choice for a first attempt at fast dynamic shadows is to approximate the emitters in a

scene using point light sources and to implement a hard shadow method. I consider two

common hard shadow methods: shadow mapping and shadow volumes.

2.3.1 Shadow mapping

Figure 11 - Scene rendered from camera (left), and light (middle). Depth buffer from the light's

view (right)
14

Shadow maps are an image based method [18]. The scene is rendered from the

viewpoint of the light to create a depth buffer (z-buffer). This z-buffer is then

transformed into the eye reference frame and the scene is re-rendered from the

viewpoint of the eye. For each pixel in the eye frame, the transformed z-buffer is

compared with the eye depth information. If a fragment is further away it is deemed to

be in the shadow of another object and rendered accordingly. Shadow maps don’t

14 Images courtesy of [18]

Interactive dynamic objects in a virtual light field

 24/95

generate any additional scene geometry and can create shadows for any entity which

can be rendered to the z-buffer. They are implemented efficiently in modern graphics

hardware. However they suffer from aliasing effects due to the finite nature of the z-

buffer. If the camera view direction is opposed to the light view direction, the shadow’s

depth information is undersampled with regard to the requirements of the camera view.

This problem is known as dualling-frustra and is illustrated in Figure 12.

Figure 12 The eye's view (left) and light's view (right). Colours represent variation in sampling

frequency of the shadow map with blue being the highest. The problem is that only a small portion

of the lights image plane (blue, right) can be used where the shadow requires most detail (blue, left).

Thus the shadow is undersampled and appears jaggy15.

This aliasing can be reduced by increasing z-buffer resolution via rendering to the

z-buffer in stages, using perspective shadow maps [20] or percentage-closer filtering

[21]. However each approach requires more computation and is beyond the scope of this

report.

2.3.2 Shadow volumes

Figure 13 - A shadow volume clipped to the camera view frustum
16

This method, first suggested by Sutherland and Crow [17], projects the silhouette

of a light occluding polygon into a scene, to create a shadow volume defined by its

15

 Diagram courtesy of [18]

16 Diagram courtesy of [17]

Interactive dynamic objects in a virtual light field

 25/95

projected surfaces. This results in shadow geometry being created along with the usual

scene description and is thus a view-independent (object space) solution. When

rendering the scene from the eye, rays which terminate within the shadow volume are

determined to be in shadow. The amount of computation involved increases with the

square of the amount of data and, for dynamic objects, the shadow volumes would have

to be recalculated each frame. This would result in slower shadow generation for a

scene with many dynamic objects. For these reasons I decided to implement shadow

mapping as opposed to shadow volumes to achieve hard shadows. However shadow

volumes would have made calculating the reflections of dynamic shadows in static

specular surfaces easier. This is discussed later. Fast implementations of shadow

volumes in graphics hardware exist [22].

2.4 The Virtual Light Field

2.4.1 Theory

The detailed concepts are covered in [1]. There follows an overview of the basic

concepts and the details most relevant to changing the implementation to support

dynamic objects. Virtual Light Fields build on the idea on light-fields [2 from VLF]

where a scene is visualised as a 2D slice of a 4D data structure. The VLF is a data

structure consisting of a uniformly distributed set of l directions over the hemisphere

(see Section 2.4.1.1). Each of these directions corresponds to a N by N set of rays in that

direction called a parallel subfield (PSF) of rays. We index the set of rays within each

PSF by considering each ray as originating at the centre of a pixel (i, j) of an N by N

image at the base of each PSF each ray travels in direction l. To exploit coherence

between rays the pixel space of each PSF is divided into a set of m by m tiles (where m

is between 1 and N and N is a multiple of m).

Figure 14 (Left) A parallel subfield (PSF). Each ray originates at the centre of its respective cell (i,j)

and travels along direction l. Here m=8, N=8. (Right) A PSF inside the hemi-sphere of directions.

Each cyan point represents a unique direction from the origin of the hemi-sphere.

The canonical PSF is the set of rays parallel to the z-axis (vector (0,0,1). We can

chose l uniformly distributed points on the +ve hemisphere and define each PSF as a

rotation of the canonical PSF into the spherical co-ordinates of each point.

The geometry of a scene exists in its own frame of reference which we will call

world co-ordinates (WC). For the purposes of the VLF the scene is considered to exist

Interactive dynamic objects in a virtual light field

 26/95

within its own bounding sphere of unit radius. The centre of this sphere is taken as the

origin for the VLF co-ordinate system – which is the WC system scaled and translated

into this unit sphere.

If we now consider a surface defined in the scene and the canonical PSF of rays

we can imagine the surface being intersected by some of these rays. It is likely given

that the rays in each tile are close to each other that other rays in the same tile will also

intersect the same surface. This coherence is exploited by storing in each tile the surface

identifiers of surfaces intersected by any rays in the tile. For each surface identifier in

each tile, there is also a visibility map for the surface and a 2D image map (called a

radiance map) intended to hold the outgoing radiances from each point which has a

visibility map entry. Intersection depths could be stored, but given the fast rasterisation

method used, they can be recomputed as needed to save space.

2.4.1.1 The distribution of directions over the hemisphere

Ideally, for the VLF, each uniformly distributed direction on the hemisphere

would have an equal solid angle and the same shape. Unfortunately, there is no known

solution which can provide this and allow constant time lookup. The distribution of

directions is achieved via a triangular subdivision of a regular tetrahedron discussed in

[33] and illustrated below. This provides solid angles with ~60% variance in solid angle

and unequal ray density in different parts of the hemisphere. Varying solid angles lead

to unequal amounts of diffuse radiance being propagated in different directions from a

diffuse surface. During the propagation phase this has to be counter balanced by a

normalization term based on the weight of the solid angle of the PSF direction. This has

implications for the shading of dynamic objects and is discussed in section XXX.

PSF directions

Quads covering

nearest pixels to

direction ω

direction ω

Figure 15 A Quadrant of the hemisphere used to lookup PSF directions (viewed from within).

Note unequal solid angles.

To lookup the nearest PSF direction to an arbitrary direction in constant time, first

assume the direction is in the first quadrant of the hemisphere. Render the quadrant to

the frame buffer so that each PSF direction has an associated set of polygons

Interactive dynamic objects in a virtual light field

 27/95

representing the directions closest to that point. The frame buffer is then read back to a

2D array and we compute the pixel position corresponding to the projection of the

required direction on the hemisphere. The colour index at that buffer position gives us

the index of the nearest VLF direction. Should the required direction not be in the first

quadrant, we can just rotate the direction into the first quadrant and add an offset to the

returned index. See [33] for further detail.

2.4.1.2 Propagation

The process of correctly populating the radiance maps in the VLF structure is

covered in section 4 of [1]. It is not repeated here in detail as it is beyond the scope of

the project. In short however the algorithm is:

• For each PSF direction ω

o For each tile T

� For each surface P

o Consider all (visible) incoming rays

o Compute the correct fraction of incoming diffuse and

specular radiance and accumulate in the total radiance map

for the sender

o Record the incoming radiance as radiance which must be

propagated diffusely in the next iteration

o Record the outgoing specular energy in the nearest PSF to

the correct reflected direction from the surface

• Repeat for a pre-specified number of iterations

The process of determining the correct fractions of energy to propagate is

complex and requires calculating the intersection area of the projections of cells from

sender to receiver. This is done using polygon clipping which, although expensive

(~80% of propagation time), is necessary to avoid serious aliasing. As well as clipping,

filtering is used during propagation to reduce aliasing effects.

The propagation phase is essential, calculating the solution to a recursive problem

by shooting light energy from each surface to all other surfaces visible from the current

surface. This is discussed in more detail in Section 3.6, when we consider gathering

light energy from the VLF onto dynamic surfaces. This process of gathering energy for

dynamic surfaces is a key difference to the existing shooting mechanism, used

iteratively in the VLF for static surfaces during propagation.

2.4.1.3 Walkthrough

Given this data structure and supposing that all radiance maps in all tiles in all

PSF had been populated with their correct outgoing radiances for some globally

illuminated scene, then we have a method for finding an approximation of the radiance

traveling in any direction ω from any point P on any surface in the scene. We find the

nearest PSF direction to ω which we can call ω’. This ω’ will have a corresponding

rotation matrix which will rotate point P into the canonical PSF direction (0,0,1). This

same rotation matrix will rotate the point P into the canonical frame of reference. Call

this point P’. The projection of this P’ onto the XZ plane of the canonical PSF (i,j in fig

1) will give a tile and a cell within that tile which emits radiance in the desired direction.

Interactive dynamic objects in a virtual light field

 28/95

We only have to search through the surface identifiers for that tile until we find the

surface identifier for the point P, and then look at the corresponding pixel of the

outgoing radiance map.

In a walkthrough we will need to determine the nearest PSF direction frequently –

so the method used needs to be quick – and we would like to maintain a constant frame

rate – so we would like it to be a constant time operation. This is achieved using a

triangle based subdivision of the hemisphere (See 2.4.1.1).

A better approximation of the actual radiance required can be achieved by

interpolating the radiance values from the 8-neighbourhood of pixels around the

projection of P’.

A better approximation still can be achieved by picking the three closest PSF

directions to the desired direction and interpolating the 8-neighbour interpolated

radiances, using spherical interpolation weights. This method is used in the

RENDER_RAYTRACE mode of the existing walkthrough code. See section 2.4.2.2 for

a description of how the walkthrough modes are implemented.

2.4.2 Overview of the existing VLF code

The existing VLF code base was ~90,000 lines of C++ code. The code was object-

oriented and made heavy use of templates. These features make the code flexible but

imposed a steep learning curve when modifying the code. The code was supplied as a

Microsoft Visual Studio solution (vlfApps.sln) broken down into projects along

conceptual lines. For the purpose of this report, the main areas of interest are the

vlfPropagator and vlfGlutWalkthrough projects, which create and display the VLF data

respectively. Support classes are defined in the vlf, glib, scenegraph and utils projects.

For the purposes of reporting clarity, a new namespace ‘dynamic::’ and the files

dynamic.cpp and dynamic.h have been created to contain the majority of changes.

Existing classes were only modified where it was more sensible to do so than creating

new code in these files. The whole C++ solution is included on a CD with this report.

Relevant code snippets are included in the body of the report. Most changes to the

original code are included as appendices. The following sections outline the existing

functionality in the two main code projects in more detail.

2.4.2.1 vlfPropagator - Propagation of light to create the VLF file

An outline of the process is given in 2.4.1.2. The input to the process is a scene

file in wavefront *.obj format containing geometry information and a material file

(*.mtl) describing surface properties. The name of this file and the parameters

controlling number of VLF directions, tile and cell resolution and many other

parameters are defined in the header file vlfGlobalDeclarations.h.

The propagator process proceeds through a number of iterations of propagation.

At the end of each iteration it outputs a VLF *.bin file which contains the state of the

VLF at that point. This file can be used as a starting point to continue propagating light

in the future. It is also useful in checking early progress, in case mistakes have been

made in the scene definition. These *.bin files are the input to the walkthrough process.

Interactive dynamic objects in a virtual light field

 29/95

2.4.2.2 vlfWalkthrough (viewer)

Figure 16 - Rendering modes (Geometry, raytrace, progressive (low quality), coherent)

A case statement in the display() routine of vlfGlutWalkthrough.cpp selects the

current viewing mode. There are four main ones shown in Figure 16. Their descriptions

follow.

2.4.2.2.1 RENDER_GEOMETRY

This mode is the simplest and thus has the highest frame rate. It displays only line

geometry of the scene and is useful for positioning the camera before switching to a

more computationally expensive mode.

2.4.2.2.2 RENDER_RAYTRACE

From the camera position, a false colour OpenGL rendering of the scene geometry

is created and then read back into main memory. Each false colour corresponds to a

surface identifier S and so, for each pixel and corresponding primary ray in the image, a

ray intersection point P can be calculated. The ray direction will intersect one triangle in

the hemispherical subdivision (see 2.4.1.1), and thus provide three vertices

corresponding to three PSF directions. Each direction provides a rotation matrix which

is used to rotate the point P into canonical PSF co-ordinates. This rotated point is

projected onto the XZ plane of the PSF to yield a pixel on the radiance map

corresponding to S (which is found in the list of surface IDs for the intersected tile). The

pixel radiance returned for each PSF is interpolated from the surrounding 8-

neighbourhood, and the three PSF radiances are interpolated using spherical

interpolation weights.

If the primary ray strikes a specular surface, the ray is reflected into the scene

until a diffuse surface is hit and radiance is determined as above. This approach

provides near constant time lookups for direction and radiance for diffuse surfaces, but

for specular surfaces the time per pixel depends on the depth of ray reflection into the

scene. The time taken to lookup a surface ID in a tile is logarithmic in the average

number of surfaces intersected by a tile.

Visually, the shading on surfaces exhibits sampling artifacts due to the

approximations in the light field. The diffuse visual quality can be improved upon as

described in the progressive mode and the speed of ray tracing improved as described in

the coherent mode.

2.4.2.2.3 RENDER_PROGRESSIVE

All diffuse surfaces are assigned a total texture map which accumulates light

energy during the propagation stage. This texture map can be used directly to texture the

diffuse surfaces, thus giving sharp visible edges. This technique is used in both

progressive and coherent modes. In addition, the reflected specular rays can return the

Interactive dynamic objects in a virtual light field

 30/95

bilinearly interpolated radiance from the intersection point on the eventually struck

diffuse total texture map, rather than the spherically interpolated light field. Because

tracing rays for the specular surfaces is slower than reading the reflection information

directly from the light field, the progressive mode will use the light field information

(with lower directional resolution) while the camera is in motion, and then render the

higher quality version using ray tracing through the reflections when the camera is at

rest. The high quality rendering progresses in a different thread of execution, so this

runs well on a dual processor PC. However the frame rate for the progressive mode is

surpassed by the coherent ray tracing mode outlined below.

2.4.2.2.4 RENDER_COHERENTRT

The coherent mode has the same visual quality as the progressive mode but it exploits

the coherence in adjacent rays to speed up raytracing for specular surfaces. The

approach is similar to Wald et al [32] and uses SIMD instructions to test bundles of 4

rays at once and a cache aligned acceleration structure (an axis aligned BSP tree) to

speed up scene traversal during ray tracing. This carefully optimized code is difficult to

modify but, due to its low frame rate, is be the natural choice of rendering method to

add dynamic objects to.

2.4.2.3 Object oriented design

Given the object oriented design of the existing code base, it makes sense to reuse

objects and design conventions where possible. This section describes some key classes

and methods used in the code. It is not an exhaustive list of the available code objects.

Descriptions are brief and expanded later in the report where required.

Figure 17 is a class diagram outlining the classes, their methods and their

inheritance. The descriptions below refer to classes in the diagram. This diagram is a

useful reference to use while reading code examples in the implementation section.

Methods in blue were added as part of this project. These are few as most code

implementation was kept in a separate namespace for clarity, however those not in blue

may have modified slightly as part of the project where required.

2.4.2.3.1 vlf::glTiledVLF and ancestors

The main VLF class. This provides access to the scene description object and the

directions of the vlf. Methods in this class allow various high level interactions with the

information within the VLF.

2.4.2.3.2 vlf::direction

Represents a unique direction within the VLF. Point() returns the direction as a

point on a unit sphere and areaWeight() returns a normalisation term which

compensates for the variation in solid angle area of that direction.

2.4.2.3.3 vlf::facesetand ancestors

Represents a group of related faces. This class is used to hold the geometry of the

scene and was reused in the dynamic VLF implementation to hold the geometry of the

dynamic object.

2.4.2.3.4 vlf::face

Represents a single face within a faceset. An texture is assigned to a hold diffuse

surface representation if required.

In
te

ra
ct

iv
e

d
yn

a
m

ic
 o

b
je

ct
s

in
 a

 v
ir

tu
a
l

li
g
h
t

fi
el

d

3
1
/9

5

F
ig

u
re

 1
7

 O
v

er
v

ie
w

 o
f

m
a

in
 c

la
ss

es
 a

n
d

 m
et

h
o

d
s

Interactive dynamic objects in a virtual light field

 32/95

3 Implementation
In Section 1, the topic of global illumination was introduced and the motivation

and aims of this project outlined. In Section 2, relevant prior work was considered and

the concept of Virtual Light Fields explored in more detail. In particular a high level

overview of the existing VLF implementation was given.

In this section, the extensions to the existing VLF code are covered in detail.

The high level approach was outlined in section 1.6. Each subsection in this section

proceeds as a discussion of each milestone - from the high level aim for that section to

the detailed implementation - including screenshots of results, and code snippets or

listings, where they enhance understanding. This layout has been chosen so that

concepts and their relevant implementations sit close together in the text to avoid a

disjointed reading experience. The overall results of the implementation stages are

drawn together in Section 4.

3.1 Adding a simple object to the existing scene

3.1.1 Definition

Geometry in the VLF is loaded from wavefront *.obj files into an object of class

vlf::faceset. This class is an efficient representation of the geometry, using indexing to

avoid redundancy. The classes it derives from supply methods for intersecting rays

with the geometry, and a matrix positioning the object within world co-ordinates

(sg::transform). This makes it an ideal choice for reuse to ultimately represent the

dynamic object.

The simplest rendering mode for the VLF scene is the geometry mode (see

2.4.2.2.1). As a first stage the aim was to add a new, simple, static object to the scene

as a vlf::faceset and to render it in the geometry mode. A cube was chosen as the

dynamic object as being simple and easy to perceive correctly in the scene. The cube

definition was hard coded in the dynamic.h header file. The vlf::faceset object,

representing this dynamic cube, is initialised in dynamic::initBox(), which is called

from main() in vlfGlutWalkthrough.cpp. See Listing 1 (end of document). The cube is

defined as 6 faces consisting of 2 triangles per face. Thus 12 vlf::face objects in total.

3.1.2 Wireframe Viewing

With our object defined and accessable via the global scope

dynamic::myIndexedFaceSet we now need to render it. The main display() loop in

vlfGlutWalkthrough.cpp consists of a case statement which switches depending on the

current rendering mode. This display routine is assigned to the glut display callback

during initialisation.

void display(void)
{
 …

 if(renderType==RENDER_DIAGRAM)
 {
 …

 }
 else if (renderType==RENDER_GEOMETRY)
 {
 …

 // existing scene rendering loop

 for (unsigned int i=0;i<myVLF.scene().faceCount();i++) {

Interactive dynamic objects in a virtual light field

 33/95

 myVLF.scene().visualiseFace(i,false,true,true,fc,true);
 }

#ifdef DO_DYNAMIC_OBJECT
 // visualise dynamic object faces
 if(showDynamicObject) {
 for (unsigned int i=0;i<dynamic::myIndexedFaceSet.faceCount();i++) {
 dynamic::myIndexedFaceSet.visualiseFace(i,false,true,true,COLOUR_WHITE,true);
 }
 }
#endif
 …

 }
 else if (renderType==RENDER_PROGRESSIVE)
 {
 … // other cases omitted

 }

 glutSwapBuffers();
 …

}

The code shaded in light blue has been added as part of this project (this

convention applied to the whole document). In this case the code uses the existing

visualiseFace() method to draw the new geometry as a wireframe into the existing

OpenGL back buffer. This utilises the existing z-buffer information to ensure correct

occlusion. When the buffers are swapped at the end of the display() call the cube is

rendered as expected in the centre in of the existing scene. See DIAGRAM. The

ability to reuse the visualiseFace method is one of the advantages of using the

vlf::faceset object to store the geometry.

3.2 Moving the object

Figure 18 Three screenshots in geometry mode with normals displayed. Cube added but static

(left). Cube moved toward camera demonstrating occlusion of static scene (middle). Cube moved

behind static cube demonstrating occlusion of dynamic object (right).

With the object visible in the scene, the next step is to move it interactively. The

existing VLF implementation allows for movement of the camera position using the

keyboard. This is achieved via the glut keyboard callback calling methods on the

worldCam object. A similar arrangement was implemented for the dynamic object. A

user would either want to move the camera or the object, but not both at the same

time, so a mode switch was introduced that used the same movements for either object

or camera depending on the movement mode. The vlf::faceset class inherits from

sg::transform, which contains a transform matrix placing the object relative to the WC

system. Motion is achieved by creating a new matrix, by multiplying the existing

transform matrix by the relevant rotations and translations (supplied by the keyboard

input) and then overwriting the existing transform matrix in the faceset.

// Keyboard callback
void keyboard(unsigned char key,int x,int y)

Interactive dynamic objects in a virtual light field

 34/95

{
 switch(key)
 {
 …

 case 'o':
 // Toggle movement mode, do we want to move object or camera?
 if(dynamic::dObjMovement)
 dynamic::dObjMovement = false;
 else
 dynamic::dObjMovement = true;
 std::cout << "Movement mode is now: " <<
((dynamic::dObjMovement)?("object"):("camera")) << std::endl;
 break;
 …

 case 'w':
 if(!dynamic::dObjMovement)
 worldCam.moveForward(moveStep);
 else // Translate the dynamic object along Z axis
 dynamic::translate(glib::vector3D<MY_FLOAT_TYPE>(0.0f,0.0f,-moveStep));
 moveDetected();
 break;
 …

 case 4: // 'CTRL+d'
 if(!dynamic::dObjMovement)
 worldCam.strafeRight(moveStep);
 else
 dynamic::rotateY(rotateStep);
 moveDetected();
 break;
 … // other movement cases omitted for brevity

}

void dynamic::translate(glib::vector3D<MY_FLOAT_TYPE> &v)
{
 // pop, translate and push the transform matrix for the dynamic faceset
 glib::taggedTransformationMatrixf cumMatrix =
 myIndexedFaceSet.cumulativeTransformMatrix();
 cumMatrix.postTranslate(v);
 if(dynamic::recordAnimation) {
 dynamic::animation.push_back(cumMatrix);
 }
 myIndexedFaceSet.transformMatrix(cumMatrix); // clears stack and replaces with supplied
matrix
}
void dynamic::rotateY(MY_FLOAT_TYPE angle)
{
 // pop, translate and push the transform matrix for the dynamic faceset
 glib::taggedTransformationMatrixf cumMatrix =
 myIndexedFaceSet.cumulativeTransformMatrix();
 cumMatrix.postRotateY(angle);
 myIndexedFaceSet.transformMatrix(cumMatrix);
}
… // other rotates left out

The keyboard controls for moving the object are:

Key Action

o Toggle camera or dynamic object motion mode

a Move object along –X axis

d Move object along +X axis

x Move object along +Z axis

w Move object along -Z axis

CTRL+w Move object along +Y axis

CTRL+x Move object along -Y axis

CTRL+d Clockwise rotation around Y axis

CTRL+a Counter clockwise rotation around Y axis

Z Clockwise rotation around X axis

Q Counter clockwise rotation around X axis

Interactive dynamic objects in a virtual light field

 35/95

All motions are in the object’s local co-ordinate system. We now have a simple,

wireframe object which can be moved within the scene in geometry mode. The next

step is to consider shading the object in one of the VLF shading modes.

3.3 Adding the dynamic object to VLF shading modes

At this point we have added a new object to the existing VLF scene, rendered as

a flat shaded wire-frame, which can move amongst the static objects in the scene with

correct occlusion. This is implemented using existing code wherever possible.

However the geometry mode doesn’t express any of the features of a VLF. It is purely

a convenience mode rendered entirely in OpenGL and uses none of the light

distribution information from the VLF.

The simplest rendering mode to actually display shading from the VLF is the

RENDER_RAYTRACE mode. However this mode doesn’t use the total diffuse

texture maps from the VLF and so is visually inferior to the

RENDER_PROGRESSIVE mode. It also doesn’t backward ray-trace the specular

surfaces and so reflections in specular surfaces are rougher approximations. The

RENDER_COHERENT mode has all the benefits of the RENDER_PROGRESSIVE

mode but the ray-tracing code is much faster but also more complex. Given this the

next step was to display a flat shaded version of the dynamic object in the

RENDER_PROGRESSIVE mode. The ultimate aim is to add the dynamic object to

the much quicker RENDER_COHERENT mode (3.3.2).

3.3.1 Flat shading and occlusion in progressive mode

In all VLF shading modes the diffuse and specular surfaces are calculated

separately and then combined at the last stage of rendering. Different methods are

used to ensure correct occlusion between specular and diffuse surfaces. When adding

a movable object to the scene, the relevant occlusion code must be altered to ensure

the object occludes and is occluded correctly.

Figure 19 The rendering stages for the low quality progressive mode before changes are made for

a dynamic object. Diffuse surfaces only (left). Low quality specular viewport texture (middle).

Final composite image (Right).

In the progressive mode the diffuse surfaces are all handled the same way. The

total radiance texture maps from the VLF are used to texture the diffuse polygons

using OpenGL. The specular surfaces are rendered using two different techniques.

When the camera is in motion we need to maintain a high frame rate. In order to do

this the incident light per visible pixel on the specular surfaces is calculated by

interpolating the irradiance from the 3 nearest incident rays to the reflected direction

using the data in the VLF. This is a near constant time lookup in the VLF per specular

Interactive dynamic objects in a virtual light field

 36/95

pixel and is the quickest method for providing an approximation of the reflections of

static geometry. However, the quality of the image generated depends on the

directional resolution in the VLF. Figure 19 shows specular surfaces rendered from a

VLF containing 512 directions and blurring in the reflection is apparent.

Figure 20 The rendering stages for the high quality progressive mode before dynamic object is

added. Diffuse surfaces only (left). High quality specular viewport texture (middle). Final

composite image (Right).

A higher quality specular surface is achieved once the camera is at rest, through

tracing rays into the scene through the reflections, until a diffuse surface is struck.

This intersection point can then be transformed into a point on the relevant diffuse

surface’s texture map, and the pixel value used to colour the specular pixel in the final

image. This higher quality rendering is approximately 8 times slower
17

 than the VLF

method for the camera position shown in the figures. The rendering time depends

upon the number of specular pixels visible and the level of recursion reached per

specular pixel and so the camera at rest rendering time will increase as the proportion

of visible specular surfaces increases.

In both high and low quality progressive rendering modes, the diffuse and

specular surfaces are rendered separately and then combined to form the final image.

In combining the two images the correct occlusion must be maintained.

3.3.1.1 Dynamic object occlusion in low quality progressive mode

In low quality mode this is achieved by rendering the scene to a false colour

index buffer. Specular surfaces are given a unique index, while diffuse surfaces are

assigned a default ‘background’ index. This index buffer is then read back to the CPU

and reflected rays are only calculated for visible specular pixels. Thus the z-buffer is

used to determine correct occlusion between specular and diffuse surfaces. The

specular texture is created with an alpha channel which is used to correctly overlay

the existing diffuse framebuffer with the specular viewport.

To account for the occlusion of the added dynamic object this code was

changed. The dynamic object was rendered to the index buffer using the background

index in addition to all the existing static geometry. This meant that where the

dynamic object occluded a specular surface it would be correctly ‘cut-out’ during the

specular rendering stage and thus not overlaid during composition of the final image

(Figure 21, middle).

17 Single CPU AMD Athalon 2500+, 1024MB.

Interactive dynamic objects in a virtual light field

 37/95

The dynamic object can then be rendered as usual to the frame-buffer using flat

shading. The OpenGL depth buffer will account for the occlusion between dynamic

and static diffuse surfaces.

Figure 21 Changing the low quality progressive mode to account for dynamic object occlusion.

Render the dynamic object to the frame-buffer (left, before rendering static diffuse surfaces).

Account for the dynamic object when rendering the specular index buffer (middle). Final

composite (right).

This process can summarised by the following pseudo-code. Changes to the

existing method are in italic.

• Render static diffuse textures to frame-buffer using OpenGL

• Render dynamic object to frame-buffer using OpenGL

• Create view-port sized specular texture

o Render specular surfaces with false index colour using OpenGL,

render dynamic object with background index colour to account for

specular occlusion using the depth buffer

o Lookup specular pixel values using interpolation from VLF

• Write specular view-port texture to the frame-buffer using alpha channel to

overwrite existing pixels where required.

The actual code can be found in Listing 2.

3.3.1.2 Dynamic object occlusion in high quality progressive mode

In high quality mode the specular occlusion is calculated differently but

otherwise the method is similar. The execution proceeds in a separate thread to

improve performance on multi-processor computers. For each pixel in the image a ray

is traced into the scene. If it hits a diffuse surface the background index is assigned to

an indexMap. If it hits a specular surface the ray is reflected and tracing continues.

When a diffuse surface is finally intersected the intersection point is transformed into

the relevant texture map to determine a colour value. This is assigned to a specular

map. When the specular view-port is created the index map is used to determine

whether to render a specular pixel. If so the pixel is set to the value from the specular

map and the alpha channel value is set to 1.0. Otherwise the pixel and its alpha are set

to 0.0. The specular texture can now be alpha blended with the diffuse frame-buffer as

before.

Interactive dynamic objects in a virtual light field

 38/95

Figure 22 Changing the high quality progressive mode to account for dynamic object occlusion.

Render the dynamic object to the frame-buffer (left, before rendering static diffuse surfaces).

Account for the dynamic object when rendering the specular view-port (middle). Final composite

(right).

The pseudo code for this plus the change required for correct dynamic object

occlusion (Figure 22) is:

• Render static diffuse textures to frame-buffer using OpenGL

• Render dynamic object to frame-buffer using OpenGL

• In a separate thread

o Create a hiQualityIndexMap and hiQualitySpecularMap by recursively

tracing a ray per image pixel

o Per pixel, if a specular surface is hit by a primary ray, then also

intersect the ray with the dynamic object. Compare the intersection

depth and if the dynamic surface occludes the specular surface then set

the hiQualityIndexMap for this pixel to the background index.

• Create a specular view-port texture by writing an (alpha =1.0) pixel from the

hiQualitySpecularMap when the corresponding hiQualityIndexMap indicates.

• Write specular view-port texture to the frame-buffer using alpha channel to

overwrite existing pixels where required.

The actual code can be found in Listing 3.

3.3.2 Flat shading and occlusion in coherent mode

The coherent mode outlined in Section 2.4.2.2.4 is the fastest, highest quality

rendering mode for the VLF solution. Diffuse surfaces are handled the same way as

for the progressive mode. But coherence between adjacent specular rays is exploited

by calculating the intersections of bundles of 4 rays in parallel using the SIMD

instruction set available on modern CPUs. To maintain the data rate required by such

parallel processing carefully optimized cache aligned binary BSP trees are constructed

from the scene description. These trees are represented in the

sg::fastTriangleIntersector class.

The primary focus of this project is on shading a diffuse dynamic object at

interactive rates. Reflections of the dynamic object in the static specular surfaces is an

important visual effect – but to implement reflections at interactive rates it would be

necessary to represent the dynamic object geometry in some form of the fast triangle

intersector class. It was decided this would be left as future work as optimised ray-

tracing data structures are not a core Virtual Light Field concept, and the whole of the

allotted time could be absorbed by implementing optimized C++ code for ray-tracing

rather than concentrating on rendering surfaces from the information in the VLF.

Interactive dynamic objects in a virtual light field

 39/95

Because of this decision ray intersections performed on the dynamic object were

executed by existing - non-parallel - ray-intersection code (sg::faceset::

faceIntersection(…)). To determine the correct occlusion of the dynamic object in

front of coherent specular surfaces, it was necessary to intersect each primary specular

ray with the dynamic object. This means for each ray in a 4 bundle of coherent rays,

the fast parallel intersection tests are being interrupted to switch back to a non-

parallel, non-optimized intersection with the dynamic object. This causes a serious

loss of performance, but still returns higher frame rates than the progressive mode for

equivalent scenes. The performance degradation per frame is greater as the proportion

of visible static specular pixels covering the image plane increases. This performance

impact only occurs for primary specular rays. To account for dynamic object

reflections each bounce of each ray would have to be interrupted. Were this to

happen, the frame rate would likely fall to non-interactive rates. Hence the decision to

leave out dynamic object reflections at this stage.

This decision has another efficiency implication. Dynamic objects would not

need to be shaded on surfaces facing away from the camera. This is explained in

Section 3.6.5.

The code which performs the coherent specular rendering is in

rayTraceSpecularDiffuseCoherentRT(…) in vlfGlutWalkThrough.cpp. The basic

premise is the same as for the progressive mode. When rendering the specular

viewport map, don’t render pixels which would be occluded by the dynamic object.

This is determined through ray intersection depth comparison between the static

specular surface and the dynamic surface.

Here are the code additions required for dynamic object occlusion. The existing

code is edited for brevity.

bool rayTraceSpecularDiffuseCoherentRT(…)

{
 … // cut

 for(// 2x2 ray bundles)
 {
 … // cut setup code

 // ray structures for additional dynamic object test, origin will not change
 glib::ray3D<MY_FLOAT_TYPE> ray=glib::ray3D<MY_FLOAT_TYPE>();
 ray.Origin(eye);
 glib::intersectionInfo<float> dynIx;
 unsigned dynIxFace=0;
 … // cut

 // loop over bundles, performing intersection tests in parallel
 // here the additional code for interrupting one ray in the bundle is given
 // in the actual code this occurs four times in total (once per ray per bundle)
 … // cut

 if (RAY01_ENABLED(currentRayBundle.m_flag) && RAY01_HIT(currentRayBundle.m_flag))
 {
 … // cut

 if(// surface hit is non-reflective (~diffuse))
 {
 DISABLE_RAY01(currentRayBundle.m_flag);
 … // cut

 }
 else
 {
 // Hit specular - but first check if dyn object occludes hit point
 // this ray test is much slower than the fast triangle intersector
 // which is a potential speed-up
 // if we hit the dynobject first then take same action as for diffuse
above

 if(showDynamicObject)
 {

Interactive dynamic objects in a virtual light field

 40/95

 // assign ray an orientation from eye through pixel

 ray.Orientation(glib::vector3D<MY_FLOAT_TYPE>(currentRayBundle.m_dirX[0],
 currentRayBundle.m_dirY[0],
 currentRayBundle.m_dirZ[0]));

 // intersect with faceset - allow RT to continue as before if there is
no hit

 // if less-than dyn obj occludes so take same action as above,
otherwise continue
 if ((depth==0)
 &&
(dynamic::myIndexedFaceSet.faceIntersection(dynIxFace,ray,&dynIx,0.00001f,true))
 && (dynIx.t() <= currentRayBundle.m_tIx[0])
)
 {
 DISABLE_RAY01(currentRayBundle.m_flag);
 RAY01_CLEAR_HIT(currentRayBundle.m_flag);
 }
 else
 {

 // previously the only behaviour in this loop...
 // Hit specular - ray continues - don't mark ray as hit yet, wait
till diffuse is found

 RAY01_CLEAR_HIT(currentRayBundle.m_flag);

 }
 }
 else {
 RAY01_CLEAR_HIT(currentRayBundle.m_flag);
 }
 }
 }
}

3.4 Simple shading for the dynamic object

At this point we have a cube rendered in a uniform colour, with correct

occlusion in both the progressive and coherent modes of the VLF walkthrough. From

this point onwards, all changes are applied to the coherent rendering mode, as it is the

quickest, and we have decided to ignore dynamic object specular reflections. The flat

coloured surfaces don’t look realistic when compared with the surrounding globally

illuminated static geometry. The object retains the same illumination wherever it is in

the scene. A good first improvement would be to shade the object as though it was

reacting to the primary light emitters in the scene. The simplest approach is to

approximate the light sources in the scene with OpenGL lights, and use the Gouraud

shading built into OpenGL to shade the cube. This provides a fast rendering of the

cube.

Gouraud shading is a simple method for calculating local diffuse reflections.

Perfect diffuse surfaces obey Lambert’s cosine law, which states that the light

intensity reflected from a point is proportional to the cosine of the angle between the

surface normal and the direction to the light. The observer position doesn’t have to be

accounted for because perfectly diffuse surfaces scatter light equally in all directions.

This is expressed by the following formula:

1

()
N

a a d pi i

i

I k I k I n l
=

= + ∑ i i

Where

I is amount of light reflected by the point on the diffuse surface

Interactive dynamic objects in a virtual light field

 41/95

ak is the co-efficient of ambient reflection for the surface

aI is the total amount of ambient light

dk is the co-efficient of diffuse reflection for the surface

n is the surface normal (a normalized vector)

il is the vector to the ith light source

piI is the normalized intensity of the light energy from the ith light source

N is the number of light sources

 By picking suitable diffuse (Id) and ambient (Ia) light values for an omni-

directional OpenGL light source and placing it at the centre of the emitter polygon, we

achieve the results in Figure 23. where the surfaces facing the primary light source

appear brighter than those facing away. The ambient light value stops the cube from

appearing black where the face normals point away from the light sources.

Figure 23 Object shaded using an approximate OpenGL light. Note however that the object

doesn't repond to shadows cast by scene geometry.

This approach has the advantage of being fast, but the object doesn’t react to the

static scene geometry. For example in the right hand screenshot of Figure 23, the

dynamic white cube sits in the shadow of the static yellow cube. However the

illumination looks almost the same as when it is directly in the path of the light rays

from the primary light source. Also this simple shading takes no account of indirect

light and so dynamic surfaces don’t exhibit colour bleeding.

The ambient and diffuse light values for the light source in this approach were

picked manually. One area for further work would be to estimate suitable values for

the diffuse and ambient light settings from the data in the VLF.

When implementing this method it was important to calculate the correct

surface normals for the dynamic object. This is because the surface normal (n) is used

in Gouraud shading in OpenGL to determine the appropriate colour value per polygon

vertex, as shown in the formula above. Because the dynamic object can move we have

to apply the same transformation matrix used on the dynamic vertex positions to the

dynamic surface normals. However, normals become skewed when operated on by

Interactive dynamic objects in a virtual light field

 42/95

translating or scaling matrices. To avoid this, the surface normals need to be operated

on by the rotational part of the transformation matrix only. The code to achieve this

existed partly in the VLF code-base already, but was unused, and so a new method

(transformedFaceNormalWC) had to be created to access it. The relevant code for this

approach is in Listing 4.

3.5 Casting shadows

Aside from the shading, something else sticks out from viewing Figure 23. The

dynamic object in the left hand screenshot looks as though it could be directly above

the static yellow cube. Or it could be further back in the scene and not vertically

above the yellow cube at all. The text states that the dynamic object in the right hand

screenshot is in the shadow of the yellow cube, but you can’t tell this just from

looking. The object could easily be much smaller and closer to the observer’s eye

point and not under the yellow cube at all. One way to remove the ambiguity is to

have the dynamic object cast a shadow onto the static scene geometry, to provide a

valuable positional cue.

Figure 24 The use of shadow mapping to produce hard shadows gives a good positional cue. Note

however the shadow ‘piercing’ effect in the left screenshot discussed in Section 3.5.2

Two methods of approximating shadows are discussed in Section 2.3: Shadow

mapping; and shadow volumes. I chose to implement shadow mapping. This seemed a

natural choice as the routines required are implemented efficiently on modern

graphics processing units (GPUs) and GPUs provide the fast rasterization already

required for calculating occlusion along rays in the VLF. Additionally the processing

required for shadow volumes scales with the square of the number of surfaces, which

would make it slow per frame for large number of dynamic surfaces. Shadow

mapping works in the image plane rather than object space so clipping and visibility

calculations reduce the amount of work required per frame. However shadow volumes

have the advantage of simplifying the calculation of shadows reflected in specular

surfaces (which is not implemented as part of this project). The reflection of dynamic

objects and their shadows is expanded on in the further work section at the end.

Interactive dynamic objects in a virtual light field

 43/95

3.5.1 Shadow mapping implementation

The technique is outlined in Section 2.3.1 and explained in detail in Everitt et al

[18]. The detailed explanation here draws from Everitt, but differs from shadow

mapping in general. Usually the technique is:

1. Render the scene to the frame buffer from the eye point of view in a dim

light. This dim illumination will form the shadowed areas.

2. Render to the shadow map (depth buffer) from the light point of view.

3. Render the scene again, but render only those portions of the scene

indicated to be unshadowed (using the transformed light depth buffer)

using a normal level of illumination.

However, we already have the scene rendered at the normal level of

illumination (step 3) in the form of diffuse total radiance maps from the VLF. So all

we want to do is reduce the level of illumination in the areas of the existing static

diffuse surfaces which fall into shadow due to the dynamic object. The approach I use

is to overwrite the fragments in the scene with black where they are shadowed. This is

then improved using alpha blending (See Sect 3.5.3).

To determine which areas fall in shadow we need a depth map rendered from

the light view (stored as a texture) and a method of transforming vertex co-ordinates

in the eye view into this depth (texture) map . An efficient method for doing this is to

use the OpenGL texture co-ordinate generation facility (texgen). This facility

generates texture co-ordinates from other vertex attributes. In particular the

GL_EYE_LINEAR texgen mode transforms the eye space vertex position according

to a user specified matrix (Te also known as eye linear texgen planes). If we consider

the various co-ordinate systems and transforms between them, as shown in Figure 25

below:

Figure 25 The co-ordinate systems and transforms involved in shadow mapping. The standard

OpenGL modelview matrix would be V
-1

M using these conventions.

We can see the required combination of transforms to map from eye space to the light

clip space is:

Interactive dynamic objects in a virtual light field

 44/95

1

e

e

light

e

e

xs

yt
SP L V

zr

wq

−

  
  
   =
  
  

   

Where lightP is the projection matrix for the light frustum. After division by

perspective the co-ordinates in clip space are in the range [-1,1]. But the texture map

is addressed by the range [0,1]. So we need to premultiply by a scale matrix S where:

1 10 0
2 2

1 10 0
2 2

1 10 0
2 2

0 0 0 1

S

 
 
 
 =
 
 
 
 

OpenGL will apply two transformations to the eye co-ordinates during

rendering. The texture matrix T and the texgen planes (Te).

OpenGL automatically multiplies the eye co-ordinates by the inverse of the

modelview matrix in effect before multiplying by Te and storing the result when Te is

specified. So if we set the modelview matrix to contain the camera’s view matrix (V
-1

)

when specifying Te we eliminate having to calculate V and we can simply leave the

texture matrix T as the identify matrix and specify the eyelinear texgen planes in

OpenGL as:

1

e lightT SP L
−=

The pseudo code for this implementation is as follows:

During scene initialisation call dynamic::setupShadowLight(…) . This will:

• Determine the position of the first light source in the scene

• Determine the centre point of the dynamic object

• Create a glib::camera<> object at the light position, pointing at the

dynamic object. With a suitable shadowmap resolution for the image

plane.

• Use OpenGL and the GL_MODELVIEW_MATRIX matrix mode to

calculate the matrix 1L− referred to as glLightViewMatrix in the code

• Similarly calculate the light projection matrix lightP referred to as

glLightProjectionMatrix in the code

• Generate a texture to hold the shadow map

Then once per frame recalculate these parameters by calling

dynamic::recalculateShadowLight(…). This will:

• Re-position the light camera

• Recalculate glLightViewMatrix

• Use OpenGL calls to calculate Te, referred to as glTextureMatrix in the

code.

Interactive dynamic objects in a virtual light field

 45/95

• Determine the front clipping plane for the current light view to avoid

rendering back projected shadows (see Section 3.5.4 below).

• Render the view from the light to obtain the depth buffer

• Copy the light view buffer into the shadowMapTexture for later use

Finally to render the shadow call dynamic::renderShadow(…) with the current

modelview matrix set to the camera view. This will:

• Use glTexGen* calls in GL_EYE_LINEAR mode to generate the texture

co-ordinates which translate the eye view depth value into the shadow

map depth buffer for comparison.

• Setup the shadow map comparison using glTexParameteri calls.

• Apply the front clipping plane to avoid backward shadow projection

• Enable shadow blending using alpha channel.

• Render areas on static diffuse surfaces which should receive shadow.

The code for the shadow mapping implementation is in Listing 5.

3.5.2 Shadow ‘piercing'

Usually in shadow mapped scenes all shadow illumination is calculated in

one pass per light source. So if two objects project overlapping shadows the

overlap area has the same shadow intensity. However, as soft shadows are already

incorporated in the diffuse texture maps generated from the light propagation, we

can easily see where the shadow 'pierces' a static object and overlays the existing

soft shadow behind a static object (See Figure 24 above). This effect is not

physically correct. Only the first surface ‘hit’ by a shadow projection should be

hard shadowed, the current implementation does not take account of this. This is

because if the projected hard shadow was to cease as it enters the penumbra of the

already present soft shadow on the static texture map the perceptual effect would

be even more jarring than allowing this ‘shadow piercing’ to occur.

The contrast between existing soft shadows and hard shadows is reduced by

introducing shadow blending (see next section).

3.5.3 Shadow blending

In real scenes a shadow isn’t completely black. Some of the surface

properties of the shadowed surface contribute to the light received by the eye. So a

red surface doesn’t appear completely black once it’s in shadow, it just appears a

much darker red. We can preserve the existing shadowed surfaces properties in

OpenGL by using alpha blending when writing the hard shadows to the image

buffer.Note that some of the existing yellow colour is preserved inside the hard

shadow cast on the static yellow cube (Figure 26, right).

Interactive dynamic objects in a virtual light field

 46/95

Figure 26 Hard shadows with (right) and without (left) alpha blending.

The following snippet demonstrates setting OpenGL blending function to

retain some of the destination texture (the pre-rendered static surface).

 glEnable(GL_BLEND); // blend the shadow rather than overwriting the existing colour.
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 for(…) { // loop over diffuse surfaces in scene
 …

 glColor4f(0.0, 0.0, 0.0, 0.5); // use alpha to preserve some destination colour
(blending)
 // render diffuse surfaces
 }
 glDisable(GL_BLEND);

3.5.4 Removing the reverse projection of the shadow

Figure 27 The back projection of the shadow (left). Back projection removed (right).

Due to the projection technique used the reverse projection of the shadow will

be formed in the scene unless some measure to remove it is taken. In this

implementation a clipping plane is placed at the cameras view plane. However only

surfaces facing away from the light direction will cause a reverse projection. So a

better method is to cull all back facing surfaces with respect to the light direction.

This can be considered to be a special case of the shadow piercing which can be

Interactive dynamic objects in a virtual light field

 47/95

removed because the effect is physically incorrect and it doesn’t add any perceptual

benefits (unlike for surfaces with normals facing the light source, where we don’t

want the hard shadow to stop suddenly where the slow gradient of the shadow

penumbra starts).

3.5.5 Shadow map resolution

As mentioned in 2.3.1 shadow maps can be under-sampled which leads to

jagged edges. This is illustrated in Figure 28. Increasing the shadow map resolution

addresses the problem.

Figure 28 Increasing shadow map resolutions from 128x128 to 512x512 addresses the problem of

under-sampling.

3.6 Advanced diffuse shading using the VLF

Our static object now casts hard, blended shadows onto static geometry. It is

shaded using Gouraud shading due to an OpenGL approximation of the scene light

source. This combination of techniques is fast so we can render the object at an

interactive rate (see Section 4.1 for timing results). These techniques also have

limitations. The dynamic object doesn’t respond to occlusion from the static scene (it

doesn’t receive shadows) and it doesn’t display the effects of diffuse inter-reflection.

This section describes an improvement to the shading implementation which

addresses these two drawbacks – at the expense of rendering time. However the

overall frame time with the new technique can still be considered interactive for some

situations (see 4.1.2). We also consider potential optimizations.

3.6.1 Theory

From the radiance equation in section 1.2 we saw that the radiance leaving a

point on a surface in a particular direction was a sum of the radiance emitted at that

point and the integral of all the incoming radiance over the hemi-sphere above that

point. The integral includes a Bi-Directional Reflectance Distribution Function

(BRDF) which relates the radiance along the incoming direction to the radiance in the

outgoing direction. For a non-emissive surface (any surface other than a light source

in our scene description) the first term is zero, leaving us with the integral only. Also

from section 3.4 we know that perfectly diffuse surfaces scatter light equally in all

directions. Thus the BRDF term is a constant value independent of incoming light

Interactive dynamic objects in a virtual light field

 48/95

direction for the perfect diffuse surfaces that the VLF models. This leaves us with the

following formula for the outgoing radiance in any direction at point p:

() (,)cosd
i i iL p L p d

π

ρ
ω θ ω

Ω

= ∫

Where d

π

ρ
 is the term the BRDF reduces to for a perfect diffuse surface and

dρ

is the diffuse reflectance of the surface, which is a user specified value.

The radiance equation is recursive. For example we desire the radiance L(p) in

any direction at a point p on a particular diffuse surface. This depends on the integral

on the right hand side (RHS) of the equation, and this integral depends on the incident

radiance over the hemisphere above p. If we trace back any one of these incident rays

to its originating surface (say this is also a diffuse surface) then how do we determine

the correct outgoing radiance? We have to solve the integral again for this new set of

incident rays. The VLF has already solved this recursive problem for us. To shade the

dynamic object we wish to know the correct radiance values for the hemisphere of

incident directions over each sample point on the dynamic object surface. This is the

value returned via a lookup along an existing direction in the VLF – we don’t need to

solve more than one integral per sample point and each integral consists of the same

number of terms as there are directions in the VLF hemisphere. The integral becomes

a simple addition of these lookup values divided by the domain of the integral.

Therefore a fast method of approximating the integral for a specific point on the

dynamic surface using the VLF data structure would be to determine which incident

directions from the VLF exist in the hemi-sphere above the surface normal. The

incident radiance at that point from the nearest intersected surface cell along each

direction can then be looked up from the VLF and the sum total incident radiance

calculated.

This method only works one way. We are gathering the incident radiance on the

dynamic surfaces, but we are not then shooting this back into the scene. Nor are we

altering the textures in the scene to account for the fact that the gathered radiance will

now not reach the static surfaces beyond the dynamic surface for each gathered ray.

However the effect of shadow mapping is a rough approximation of the effect the

dynamic object would have on the scene.

The vlf::face structure can store a total diffuse radiance texture map for each

face in the dynamic object. Ideally we would calculate the incident radiance for each

texel in this texture map. However given the large number of texels in a reasonable

resolution texture map this would be expensive. A quicker approximation is to

calculate the integral for the vertices of the face polygons only. This value can then be

used for Gouraud shading as before. This is the approach implemented here.

Enhancement by increasing the number of sample points is discussed later.

When calculating the integral we need to account for the discrete nature of the

VLF data structure. Specifically two types of normalisation need to be considered.

3.6.2 Normalising for variation in solid angle in VLF directions.

The PSF directions used in the VLF are calculated based on a recursive

subdivision of a regular tetrahedron [33]. As discussed in 2.4.1.1 this is to allow

constant time lookups of the nearest direction to an arbitrary vector. However this

Interactive dynamic objects in a virtual light field

 49/95

subdivision scheme leads to as much as 60% variation in the size of solid-angle

formed by the directions in the VLF (Figure 15). This leads to an unequal distribution

of radiance from a cell over the hemi-sphere of directions during VLF propagation.

In practice this means that the sampling of the radiance in the scene is biased

more towards some directions than others. This will affect our dynamic object shading

because in determining the colours to shade the surfaces we are attempting to

reconstruct the correct incident illumination from the samples of radiance available in

the VLF. To counter this biased sampling each PSF direction is given a normalised

weight based on its solid angle. This value is used to weight radiance arriving along

this direction during the calculation of the integral. This is the relevant code snippet

from vlfGlutWalkthrough.cpp

 // weight by area of PSF triangle on hemi-sphere
 tmpcol = (tmpcol*pd->areaWeight());

3.6.3 Normalising for the total projected unit cell area over
hemisphere

Figure 29 The result of itegrating the irradiance over the hemisphere above the surface normal at

each polygon vertex. Diffuse reflectivity = 1.0. Note the dynamic object now receives shadow

from the static scene (right).

Traditionally when integrating the irradiance at a point over the hemisphere

above that point we consider the incident rays to be infinitely thin. However for the

VLF each radiance sending cell has a discrete area. If we project the discrete area for

each sending cell onto the unit hemisphere above the receiving surface point then the

areas overlap and the domain of the integral (the sum of these areas) is much greater

than the area of a unit hemisphere. To account for this we calculate a ‘total projected

unit area’ which is the sum of the projected area of a unit cell projected into each PSF.

This value multiplied by the actual area of a sender cell gives the domain for the

integral.

Interactive dynamic objects in a virtual light field

 50/95

Figure 30 Visualisation of the total projected unit cell area over the hemisphere. Note the

contribution (area of unit cell projection onto 2D base plane) of directions forming a greater

angle with the surface normal falls as the angle increases. Here the direction corresponding to the

red cell projection contributes less energy than the green or yellow directions.

We also need to account for the cosθ term in the integral. This term accounts

for the fact that sender surfaces which are at greater angles from the receiver surface

normal contribute less energy to the receiver cells than those directly overhead.

When calculating the total projected unit area the unit cell is projected onto the

hemisphere and then back down to the plane of the surface where the area is measured

(Figure 30). This value is a better approximation of cosθ than using just the angle

between the sender and receiver surface normals because it accounts for the finite area

of the sender cell. The code was changed to record this value for each PSF direction.

This value can then be used as a quick lookup for the proportion of energy received

by the receiver surface as long the correct corresponding PSF index can be found.

This is achieved by considering the receiving surface normal as being co-incident

with the Z-axis of the canonical PSF frame of reference and looking up the PSF index

which corresponds to the direction to the sender surface in this frame of reference via

the following process.

1. Determine the vector pointing from the receiving point to the sender

surface in WC (vdir in code).

2. Transform this vector into the canonical face frame of reference UVN.

Where the receivers face normal is parallel to the +tive Y-Axis.

3. Rotate this vector into the canonical PSF frame of reference. This is a 90

degree rotation around the X-axis of the canonical face frame of

reference, as the canonical PSF frame places the hemisphere in the +tive

Z space above the X-Y plane.

4. Use this transformed vector to lookup the corresponding PSF index.

Interactive dynamic objects in a virtual light field

 51/95

5. Use this index to lookup the pre-calculated energy proportion required.

Figure 31 visualises this set of co-ordinate systems. The transformed vector

pointing to the sender cell is coloured in red in each frame. The cells projected onto

the hemisphere have been made smaller to avoid overlapping for the sake of clarity.

This also highlights the uneven sampling density over the hemisphere which is

address by the normalisation covered in Section 3.6.2. The projected cells are shaded

from green to black. This shading corresponds to relative contribution each direction

makes to the overall integral (in effect this is cosθ varying from 1 (strong green)

directly above the receiving point to 0 (black) as the angle increases).

Figure 31 Visualising the co-ordinate systems and transforms involved in accounting for the

cosine term in the integral (see text).

3.6.4 Implementation of advanced shading

To summarise each of the steps in the method outlined above here is the pseudo

code for shading the object from the VLF.

• For each face

• Determine the correct surface normal

Interactive dynamic objects in a virtual light field

 52/95

• If the face isn’t visible to the camera, next face. (this has implications

for reflections in specular surfaces – see 5.1.1).

• For each pre-calculated subdivided triangle within the face

o For each vertex in the triangle

� Transform to correct location for dynamic object

� If the colour value for this vertex has been cached then

use the cached version, else gather the incident light…

� For each direction in the VLF

• Check direction is incident on surface, invert if

not

• Take vector from receiving point to sending cell

and transform into the PSF co-ordinate system, to

lookup the cosine weighting.

• Sample the radiance from the sender cell

• Normalise by the PSF area weight (account for

variation in solid angle

• Weight by cosine term

• Divide by sender cell area (to account for actual

cell projected area rather than unit cell projected

area)

• Accumulate result into total radiance sum (col in

code).

� Multiply the sum total by rho_d/PI and normalise by total

unit cell projected area

� Cache this value because it will be shared by other

subdivided triangles.

o Draw the triangle with Gouraud shading.

This cost of this algorithm is O(number of directions in VLF * number of

visible sub-divided vertices * log(average number of faces per tile in VLF))

The relevant parts of the code edited for brevity are included here:

for(//each face in dynamic object)
{

glib::colourRGB<MY_FLOAT_TYPE>
rho_d=((VLF_MATERIAL_TYPE*)dynamic::myIndexedFaceSet.faceMaterial(f))-
>kd()*((VLF_MATERIAL_TYPE*)dynamic::myIndexedFaceSet.faceMaterial(f))->diffuse();

…

for(// each vertex for each polygon for each face) // full code on CD too long for here
{
for(// each direction in the VLF)
{

MY_DIR_TYPE* pd = myVLF.directions().item(di);

…

glib::vector3D<MY_FLOAT_TYPE> vdir=glib::vector3D<MY_FLOAT_TYPE>(pd->point());
glib::ray3D<MY_FLOAT_TYPE> ray=glib::ray3D<MY_FLOAT_TYPE>(vertex,vdir);

…

sg::plane<float> plane;

// determine the matrix which rotates a vector in WC into the canonical face frame (Y-axis
parallel to face normal)

Interactive dynamic objects in a virtual light field

 53/95

plane.transformMatrix(dynamic::myIndexedFaceSet.getFace(f)->toCanonical());

// use the transformNormal method to apply only the rotation portion of this matrix to the
vdir vector

glib::vector3D<MY_FLOAT_TYPE> hdir= plane.transformNormal(vdir);

// the hdir vector now points in the direction to the sender surface in the canonical face
frame.
// however we need to rotate this to be in the canonical PSF frame

// rotate this vector 90 degrees around the X axis so it's now in the PSF canonical frame
(+tive Z-axis is top of hemisphere)

hdir = (hdir.homogenize() * rot90aroundX).dehomogenize();

// hdir now points to the PSF direction corresponding to the cosine scaling factor we need.

hdir.normalize();

// find VLF direction corresponding to vector from receiver to sender
myVLF.directions().item(pHemiDir,hdir);
hdir = pHemiDir->point();

…

result= myVLF.getSampleAndFaceIndexByRaycast(tmpcol,ray,faceInd);
…

// weight by area of PSF triangle on hemi-sphere
tmpcol = (tmpcol*pd->areaWeight());
// also weight by fraction of projected unit cell on hemisphere (roughly a cosine term over
the hemisphere)

projArea = dynamic::PSFUnitProjectedArea.at(pHemiDir->m_linearIndex);
…

float areaDMactual=(actualV*actualU)/static_cast<float>(NsU*NsV);

tmpcol *= projArea / areaDMactual;
col+=tmpcol;

…

} // end loop over all directions for this vertex

col=col/static_cast<float>(myVLF.totalProjectedArea());

//we want L = rho_d/pi * integral
// sum terms of integral.
col = (rho_d / static_cast<float>(PI)) * col;
} // finished gathering irradiance for this vertex
} // finish face from dynamic object

3.6.5 Reflections of the dynamic object in the static scene

In section 3.3.2 the modifications implemented for correct occlusion of static

specular geometry by a dynamic object are described. The dynamic object is

intersected with each primary specular ray that hits a specular surface. However the

dynamic object is not intersected with subsequent reflections of the specular ray, and

so does not appear as a reflection in specular surfaces. As mentioned it would be

simple enough to intersect the object at each level of recursion and so account for the

reflection, but because the intersection code for the dynamic object isn’t optimized for

coherent ray-tracing this would badly affect frame rendering times. Given that we are

not rendering reflections then we don’t need to gather light for vertices facing away

from the camera, which speeds up the light gathering process. If the dynamic object

intersection code is optimized in the future and interactive reflections are possible

then the correct reflection may require gathering of light on surfaces facing away from

the camera. At this point level of detail optimizations (see 3.6.6) would be useful as

reflections are often much smaller than the rendered object.

Interactive dynamic objects in a virtual light field

 54/95

3.6.6 Increasing the number of sample points

As we are gathering irradiance at the vertices of face polygons a simple way to

increase the resolution is to use triangular subdivision to form more sample points at

the mid-point of each existing triangle edge (Listing 6). The subdivision vertices are

pre-calculated and stored in memory, so during run-time the user can select the level

of subdivision to use for shading. This approach gives us the flexibility to implement

some form of level of detail shading, where if the polygons project onto a large

enough area of the camera image plane a higher level of subdivision can be selected

for shading. This could be implemented as future work.

Figure 32 Upper row: triangle subdivision at levels 0,1,2. Lower row: the effects on shading

Triangle subdivision is impractical after 3 levels of subdivision as the vertex

count increases exponentially[33]. Specifically the vertex count V at subdivision level

l (where l=0 is two triangles per cube surface) is:

(2 1)(2 2)

2

l l

V
+ +

=

Additionally it could be argued that perceptual advantages due to the higher

resolution lighting effects received on the cube surface are not worth the expense of

the (much) lower frame rate. This is discussed further in the results section.

When considering sampling the irradiance at every texel in a diffuse radiance

texture for the dynamic object it is worth noting that if each PSF is considered for all

texels at once we could perhaps project each visible intersected sender surfaces total

radiance map for that PSF onto the receiving surface. This may be possible to

implement efficiently in hardware using multiple passes to build a texture. This is

mentioned in the further work section.

Interactive dynamic objects in a virtual light field

 55/95

3.6.7 Decreasing the number of sampled directions

The innermost loop in the algorithm outlined in 3.6.4 is over each of the

directions of the VLF. A crude method of reducing the cost of this algorithm is to

sample only every other direction. Because the indexing scheme is based on a

tetrahedral subdivision of the hemisphere this biases the result because it will skew

the sampling density over the hemisphere, but it may be useful in some cases. Useful

further work could be done to apply some form of importance sampling at the stage to

reduce the number of directions contributing and thus speeding up the algorithm.

3.7 Scene energy balance considerations

During the integration of light from the VLF we have ignored the fact that the

irradiance receiving point should also be considered to possess a finite area. The

received irradiance per incoming direction should be multiplied by the area of the

intersection between the projection of the senders cell onto the receivers cell area.

This is how the propagation of diffuse energy proceeds in the full VLF solution –

however to achieve this requires polygon clipping, which is expensive. Roughly 80%

of the propagation phase for the VLF consists of clipping operations. This is a

necessity for the full VLF solution because light is propagated through many

iterations and so errors in propagation are accordingly amplified.

For the dynamic object we consider only one iteration of gathering irradiance

onto a diffuse surface. Additionally we only wish to give the impression of correct

irradiance to a casual human observer. For one iteration only the errors accumulated

are small compared to the speed increase gained by avoiding clipping. For these

reasons the intersection area of projected cells was ignored. It is assumed that the area

of intersection equals the area of the projected cell.

Additionally the dynamic object is intercepting light in the scene. The rays

whose paths are truncated by the presence of the dynamic object should be followed

to the next surface intersection and the corresponding amount of radiance removed in

order to maintain the existing energy balance in the scene. Such an operation would

be expensive to implement as outlined here, although perhaps it could be achieved via

a technique similar to incremental progressive radiosity [23]. For our purposes it was

reasonable to ignore this effect, as it is assumed the surface area of dynamic objects

would be small compared to the scene. The use of shadow mapping approximates this

effect for direct light rays, but not for indirect rays.

3.8 Summary

This chapter described in detail the steps taken to add new movable geometry to

existing VLF solutions. The approach proceeded via a number of milestones

beginning with the addition of a simple static wire-frame cube to the existing

geometry rendering mode. The ability to move this object interactively was then

added. This object was integrated into the more complex progressive rendering mode

which rendered the static geometry using the GI solution but the dynamic object with

flat shading. Occlusion had to be handled separately for diffuse and specular surfaces

and separately for the low and high quality specular rendering modes. The complex

coherent rendering mode offers further speed gains over the progressive rendering

mode and so the object was integrated with correct occlusion into this mode too.

Once using the fastest rendering mode (coherent) we could address the

illumination effects caused by the dynamic object in the scene. Shadows provide an

Interactive dynamic objects in a virtual light field

 56/95

important depth cue and so the ability for the dynamic object to cast shadows was

added. This was implemented efficiently in graphics hardware using the shadow

mapping technique. The dynamic object also needed to be shaded realistically. An

efficient first approximation using an OpenGL light was implemented. This didn’t

account for shadows cast onto the dynamic object or diffuse inter-reflection between

static and dynamic faces. A better but slower technique was to integrate the incident

light on the dynamic object using the data from the VLF. This allowed the dynamic

object to receive shadow and diffuse inter-reflection, but not to send diffuse inter-

reflections into the scene. The sampling resolution of this technique was improved

through triangular subdivision – at the expense of rendering time.

Interactive dynamic objects in a virtual light field

 57/95

4 Results
The implementation section described in detail the enhancements made to the

existing VLF walk-though code base in order to enable a moveable object at

interactive rates with varying degrees of integration in the scene. These degrees of

integration are summarised in the following tables.

Dyn Obj shading Geometry Progressive Coherent Shadow mapping plus: OpenGL light VLF light

Wireframe � Dyn Obj appearance

Flat shading � Receives shadow �

OpenGL light � Receives diffuse interreflection �

VLF light �

Static scene appearance

Receives shadow � �

Receives diffuse interreflection

In this section we present the results of these enhancements and attempt to

measure how successfully the aims were achieved.

As described in Section 1.5 the aim of this project is to achieve realistic

rendering of a scene containing a dynamic object which can be moved at an

interactive rate. These aims can be evaluated through both quantitative and qualitative

tests. Quantitatively we can measure the time taken to render frames of different types

of scene in different modes and determine the time contribution of each stage of

rendering. Qualitatively we can judge how ‘realistic’ the desired effect (shadows,

diffuse inter-reflection) looks. Such qualitative judgements can be subjective, but for a

given dynamic object position we can render a similar static object using the full VLF

method and judge how close the dynamic object shading mimics the full ‘correct’

solution.

When discussing interaction we need to define what constitutes an interactive

frame rate. As frame rates vary depending on hardware platform and we have only

one platform to test on we will define the tests relative to the performance of the

original code without the dynamic object extensions. If we assume that in coherent

mode the original VLF team could achieve 20 frames per second for a simple scene

on their target hardware (as is claimed in [2]), then if we achieve 2 frames per second

in coherent mode without enabling any of the dynamic object enhancements for a

similar scene on the available test hardware we can take 2 frames per second as being

an interactive rate. This relies on the assumption that there is a constant scale factor

for performance between these test platforms, which is unlikely given the nature of

PC hardware (different chipsets, cache sizes, memory, GPUs etc) however it is

adequate for our purposes. In fact 15FPS is considered an acceptable interactive frame

rate [12] so any adjusted rate consistently above 15FPS is accepted as interactive.

All tests were executed on a single processor home PC with the following spec.

CPU: AMD Athalon 2500+ Main RAM: 1024MB. GPU, Nvidia Geforce 6600GT

RAM: 128MB. It should be noted that the progressive mode was designed to render

the hi-quality specular surfaces in parallel on a dual processor PC so timings could be

improved on a more suitable test system.

4.1 Frame rendering times

The original VLF walkthrough implementation achieved 20 frames per second

in coherent mode on a dual Xeon 1.7Ghz workstation for a simple office scene. With

128x128 rays per PSF, 16x16 tiles per PSF and 2049 directions. To keep propagation

time and memory size requirements manageable on the our lower spec test

Interactive dynamic objects in a virtual light field

 58/95

workstation all test scenes used here were rendered with 513 directions with 8x8 cells

(rays) per tile and 8x8 tiles per PSF.

To record video a simple animation recording and playback system was

implemented. Keyboard control of motion was recorded from the user and then played

back with one dynamic object transformation per frame rendering pass.

Timer code was used to record the time taken for each render stage per frame.

Each frame was rendered at least three times (and some times as many as 55 times)

and then times were averaged to produce the results below. Animations were designed

to exhibit the strength and weaknesses of the algorithms used. Video of the

animations is available on the CD.

4.1.1 Progressive rendering frame times18

Flat shading of the dynamic object, correct occlusion and shadow mapping were

implemented in the progressive mode before development moved onto the coherent

mode.

The overall time taken per frame when producing a rendering in progressive

mode consists of:

1. Time taken to render static diffuse surfaces (texture map)

2. Time taken to render dynamic object flat shaded surfaces

3. Time taken to prepare and render dynamic shadows from the shadow map

4. Time taken to calculate and render the specular viewport texture

The average taken for step 1 & 2 combined for any test scene (of roughly 20-40

polygons) with a 512x512 pixel viewport was approximately 1 millisecond. The time

take for step 3 was roughly one tenth of a millisecond. These low times are due to the

accelerated OpenGL hardware used and are clearly within interactive frame rate

requirements and so will not be explored further.

Step 4 is by far the most time consuming as one would expect as it involves

determination of and lookups along a PSF directions in the low quality mode and

recursive ray-tracing in the high quality mode. It increases as the number of specular

pixels covering the viewport increases. It is this step we shall examine in more detail.

We wish to test how the addition of a dynamic object to the scene impacts the

specular rendering time. Three tests were performed on the same scene (Figure 33).

Figure 33 The progressive mode test scene for specular timings. No object (left), specular surface

uncovered (middle) and covered (right)

18

 Results here will not be optimum because the test hardware does not have dual CPUs and

therefore doesn’t exploit the parallel code for rendering the high quality specular mode.

Interactive dynamic objects in a virtual light field

 59/95

Each test was performed three times and the results averaged to reduce the

impact of other background processing due to the operating system etc. Error bars on

the graph indicate the width of one standard deviation in the measurements. The tests

were:

1. Time taken to render specular pixels with no dynamic object code used.

(this is equivalent to the original code base and so is our control case).

2. Time taken to render specular pixels with dynamic object present but not

covering the specular surface.

3. Time taken to render specular pixels with dynamic object present and

covering the specular surface.

Tests 2 & 3 will help determine the effect the occlusion calculation method has

on the render time. We consider the high quality and low quality render times

separately. As high quality mode is only used when the object is at rest the timings

were taken without object motion with and without the dynamic object code included.

4.1.1.1 Low quality progressive mode frame time

We expect that the

addition of a

dynamic object has

negligible effect on

low quality

specular frame

time when the

specular surface is

not covered

because the same

number of specular

pixels have to be

looked up in the

VLF in both cases.

We expect the

specular frame time

to reduce if the dynamic object occludes the specular surface, because the index map

created by rasterising the scene using OpenGL will contain less specular pixels, and

so less specular lookups are required. These expectations are confirmed by the results

of the test illustrated in Figure 34.

4.1.1.2 High quality progressive mode frame time

We expect that the

addition of a

dynamic object will

increase high

quality frame time

whether the

specular surface is

occluded or not.

This is because

every primary

specular ray needs

to be additionally

Low quality progressive mode

1.30

0.96

1.33

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Without and with dynamic object. Covering specular surface

or not.

S
p

e
c

u
la

r
re

n
d

e
r

ti
m

e

(s
e

c
s

)

NoObj Uncovered Obj Covered Obj Uncovered

Figure 34 Specular render time results low quality progressive mode

High quality progressive mode

6.98

7.23

7.82

6.00

6.50

7.00

7.50

8.00

Without and with dynamic object.

Covering specular surface or not.

S
p

e
c

u
la

r
re

n
d

e
r

ti
m

e

(s
e

c
s

)

NoObj ObjCovered ObjUncovered

Figure 35 Specular render time results high quality progressive mode.

Interactive dynamic objects in a virtual light field

 60/95

intersected with the dynamic object to determine occlusion. When the surface is

occluded no further recursion of the specular ray is necessary and so we expect a

faster render time than when the specular surface is occluded.

These expectations are confirmed by the results in Figure 35. A better method of

determining specular surface occlusion for primary specular rays (such as the

rasterised index map used in the low quality mode) would improve this method and

reduce the frame time overall. However as specular render time in coherent mode is a

great improvement on the progressive mode these times are no longer a concern.

4.1.2 Coherent rendering frame times19

We have

established that

shadow mapping

and diffuse texture

mapping in

OpenGL take

around 1

millisecond and so

are well within

interactive frame

rate requirements.

Similarly

measuring the time

taken for the

approximation of

the light source

using an OpenGL light to produce approximate diffuse shading in coherent mode has

a negligible effect (tenth of a millisecond). So we are only concerned with the effect

the dynamic object has on specular surface render time and the amount of time it takes

to integrate the light from the VLF in the advanced shading mode.

The specular occlusion for the dynamic object in coherent mode is calculated

using a similar technique to the progressive mode and so we expect similar results. I.e.

adding the dynamic object will have an adverse effect on specular pixel rendering

times, and the effect will be worse when the object doesn’t occlude the specular

surfaces. The same test scenes were used as for the progressive mode, but 55 frame

times were averaged to get the results (the resulting standard deviations ranged from

2% to 0.8% which are too small to show on the resulting graph). The dynamic object

is rendered using light integrated from the VLF and shadow mapping.

The results (Figure 36) confirm the expectation. However the degradation of

specular rendering time with the object as opposed to without is much worse than in

the progressive case (in the non-occluding case coherent specular rendering takes

200% of the time taken for the original code without the dynamic object, as opposed

to 112% in the similar progressive case). This is because the highly optimized SIMD

intersection code used in the coherent mode is being interrupted once per primary

specular ray to perform a slower (non-optimized) intersection with the dynamic

19

 Results here will not be optimum because the test hardware does not have dual CPUs and

therefore doesn’t exploit the parallel code for rendering the coherent specular map.

Coherent mode frame time by type of rendering

0.30

0.57 0.52

0.11
0.07

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Uncovered Uncovered Covered

NoObject Object Object

Scene type. Without object (left). With object not occluding specular

(middle), object occluding specular (right)

T
im

e
 (

s
e
c
s
)

Spec Diffuse

Figure 36 Coherent frame render time results

Interactive dynamic objects in a virtual light field

 61/95

object. Thus much of the advantage in parallelising the task is lost. Either a better

method of occlusion determination for specular surfaces (similar to the low quality

progressive) or implementing the dynamic object intersection routines using the

coherent method would improve the result. The reasoning for the approach taken here

was discussed in section 3.3.2.

The time taken for the diffuse gathering in the un-occluded case is roughly 30%

of the time required for the specular rendering in the case of the original code. If we

equate the original 0.3 seconds per frame to being 20FPS on the test hardware from

the original paper and ignore for now the slowdown caused by the non-optimized

specular occlusion then the this would provide 0.41 second per frame and an adjusted

rate of just under 15FPS. This is just outside the definition of interactive we set out at

the beginning of the section but it is an encouraging result because no particular

optimisations have been applied to the diffuse result so far, and the visual results are

perceptually acceptable (as shown in the next section).

The time taken for the diffuse gathering in the occluded case is roughly 2/3 of

the time for the un-occluded case. This is due to the face that only 2 faces of the cube

are visible in this case instead of 3 as in the un-occluded case. This is in-line with the

linear scaling in the number of visible vertices predicted for the diffuse gathering

method (see section 3.6.4).

 In section

3.6.6 triangular

subdivision is used

to increase the

number of sample

points. We expect

the diffuse

gathering time to

scale linearly in the

number of visible

vertices. To test

this the same scene

was used with

increasing depth of

triangle

subdivision. The

ratio of number of samples to time remains constant as expected at roughly 10ms per

sample (Figure 37).

In section 3.6.7 the simple optimization of reducing the number of directions

sampled by only considering every other direction was implemented. This does halve

the diffuse gather time as expected. The visual effect can be seen in section (4.2.5).

4.1.3 Quantitative Summary

 There are a large number of factors affecting the rendering time. In particular

scenes with larger numbers of visible specular pixels will take much longer than those

without when ray-tracing is used (high quality progressive or coherent) rather than

lookup from the VLF. This scales exponentially depending on the depth of recursion

required and is the case whether dynamic objects are used or not. The test scenes used

contain relatively large specular reflectors and are probably not typical of many

Diffuse gather time when increasing sample points through

triangular subdivision

0.11

0.21

0.53

0.00

0.10

0.20

0.30

0.40

0.50

0.60

18 36 90

Number of samples

T
im

e
 (

s
e
c
s
)

Figure 37 Increasing number of diffuse sample points

Interactive dynamic objects in a virtual light field

 62/95

scenes used in VR experiments. Even so the method used for determining the correct

occlusion of the dynamic object with regard to specular surfaces should be improved

to scale more predictably. A primary ray rasterization method such as that used for the

low quality progressive mode could be implemented with little further effort.

However for the reasons given in section 3.3.2 specular intersections were not

the focus of this work. The results for the diffuse shading methods suggest if colour

bleeding and receiving shadow on the dynamic object are not important then the

OpenGL approximation of the light sources plus shadow mapping is easily fast

enough to provide interactive frame rates on our test hardware. If advanced shading is

required then the integration of light from the VLF is a suitable method for simple

objects (with low visible vertex counts), but as the gathering time scales linearly in

number of directions and vertices then for higher resolution VLF scenes or more

complex dynamic objects the method will eventually no longer provide an interactive

rate. The failure point can be postponed simply by halving the number of sampled

directions, at a cost in visual accuracy due to the sampling bias this introduces. There

is a large scope for further optimization discussed in section 5.1.

4.2 Qualitative Tests

Having discussed the cost for each method we can now look at the visual effect

produced. The screenshots throughout the project give a good impression of each

effect in isolation. In this section we concentrate on judging the accuracy of and

integrated impression given by the advanced dynamic shading in coherent mode

including shadow mapping. Where relevant we will compare the dynamic object to a

pre-rendered scene using a similar static object in the same position to see how

closely the dynamic shading matches the ‘correct’ shading solution. As the project is

interactive there are some videos demonstrating the object moving on the attached

CD.

4.2.1 Luminance of dynamic diffuse cube

Figure 38 The luminance test scene. The dynamic object can be determined by it's hard shadow.

See text for descriptions.

A diffuse scene containing cubes with different diffuse material properties in

different positions was pre-rendered using the VLF. The same properties were then

assigned to the dynamic cube and it was placed in similar positions in the scene and a

Interactive dynamic objects in a virtual light field

 63/95

subjective judgement was taken by the author on how well the object matched the

‘correct’ solution. A more rigorous approach using ROC (receiver operator

characteristic) curves and a selection of subjects willing to judge the results could

have been used had more time been available.

Figure 38 is a selection of comparisons showing the dynamic cube in various

positions and materials similar to nearby pre-rendered static cubes. 1. Is the whole

scene without the dynamic cube. 2 and 3 show the dynamic cube in red near a static

cube of the same colour and reflectivity. Note the hard shadow contrasts strongly with

the soft shadow but gives a useful positional cue. In 3 the dynamic cube is on the left.

The top surface is darker than the equivalent static object but the match is otherwise

good and certainly the object looks to ‘belong’ to the scene. Differences are due to the

rougher approximations being made during the integration. Specifically the projected

intersection area between sender and receiver cell is not being calculated. 4 places a

white dynamic cube at the top right corner for comparison with a similar static cube at

the top left corner. The hard shadow shade is a good approximation of the soft shadow

shape and the luminance is well matched. 5 and 6 place the dynamic white cube next

to its static counterpart at the top corner of the scene. The shading in 6 uses the

OpenGL light approximation for comparison with the advanced shading in 5. You can

see the sides pointing away from the light are more accurately shaded for the

advanced method. 7 and 8 place a green dynamic cube next to its counterpart, and

then down in the bottom corner. Note how the dynamic object becomes darker the

further it is from the light.as you would expect. Again the colour match in 7 is

accurate.

Interactive dynamic objects in a virtual light field

 64/95

4.2.2 Colour bleeding for dynamic diffuse surfaces

Figure 39 Demonstrations of diffuse inter-reflections. Pixel colours extracted and illustrated on a

2D slab where appropriate.

The advanced shading by integrating light from the VLF is the only

implemented shading method to account for diffuse inter-reflections.

Figure 39 (1) is the scene rendered to test diffuse inter-reflection. (2) shows a

dynamic white cube near to static white cubes with the same material parameters. The

overall appearance is very similar to the static ‘correct’ solution. The RGB values for

the reflected colours are shown in (2). As expected there is a strong red diffuse

reflection from the nearby red surface and a strong yellow/red reflection on the

surface close to both red and yellow surfaces. The top surface of the cube is darker

than for the static cubes and demonstrates that the approximations in gathering won’t

always provide an exact match. But perceptually the effect is acceptable. (3) shows a

green static cube not picking up any diffuse red as you would expect (and similar to

the static green cube nearby). 4 and 5 are from different scenes with the diffuse colour

of the dynamic cube at RGB = (1,1,1). They also demonstrate believable colour

bleeding.

4.2.3 Shadows cast by the dynamic object

The hard shadows cast by shadow mapping are a strong contrast to the already

present soft shadows in the scene. From Figure 38 and Figure 39 it is easy to identify

the dynamic object by the shadow it casts. This could distract from the realism of a

dynamic scene, however techniques such as percentage closer filtering or multiple

shadow maps blurred together could be implemented to create soft shadows at

Interactive dynamic objects in a virtual light field

 65/95

interactive rates. From certain viewing positions the hard shadows appear jagged. This

is a weakness of the shadow mapping method which can be addressed through

increasing the resolution of the shadow map. This is illustrated in Figure 24.

4.2.4 Shadows received by the dynamic object

The advanced shading by integrating light from the VLF is the only

implemented shading method to account for shadows received on the dynamic object.

This can be seen by comparing the right hand screen shot of Figure 24 to the frames

of the animation in Figure 40 below.

Figure 40 The advanced shading accounts for static object occlusion in the form of received

shadow. Here dynamic cube moves from the shade into the light

Even at the lowest sampling rate (once per vertex per face, so the corners only

in Figure 40) the impression of received shadow is strong. By using triangular

subdivision we can increase the resolution of the received shadow . However in my

opinion the visual benefit is often not worth the increase in render time (Figure 41).

However the benefits of increasing the sampling resolution can be seen as the object

passes through a shadow on the video from the CD.

Interactive dynamic objects in a virtual light field

 66/95

Figure 41 Shadows at 0,1,2 levels of triangular subdivision. For many applications the lowest

level may be sufficient.

4.2.5 Sampling half the VLF directions

By simply sampling every other direction in the VLF (i.e. skipping every other

linear index into the VLF directions) we can halve the time taken for diffuse

gathering. This technique biases the result and a more intelligent scheme should be

devised. However the effects are still acceptable (Figure 42) and this technique may

be useful in some applications. A video demonstrating the technique is available on

the CD.

Figure 42 A red dynamic cube in shadow sampled along all directions at subdivision level 2 (left).

Sampled along every other direction (right). Note the similar result.

4.2.6 Video

The accompanying CDROM disc contains some video demonstrating the

dynamic object motion in real-time. These were recorded on the available test system

and show the relative interactivity with different settings such as higher triangle

subdivision or only sampling half the number of directions. The specular rendering

loop was disabled for these videos as we wish to compare relative diffuse gathering

performance.

4.2.7 Qualitative Summary

Two realistic modes of shading of shading have been implemented. The

advanced VLF shading mode is superior to the OpenGL approximation mode because

Interactive dynamic objects in a virtual light field

 67/95

it accounts for both diffuse inter-reflections and shadows (received on the dynamic

object only in both cases). The only effect not approximated is the effect diffuse

reflection from the dynamic cube would have on the scene itself. This would be

expensive to implement and is left as a consideration in further work. Through

comparison of the VLF dynamic shading mode with the full static solution it can be

seen that the VLF shading mode produces results close to what would have been

obtained for a full solution but at an interactive rate. Differences are due to the nature

of the approximations used, but the realism of the overall visual result is more than

acceptable.

Interactive dynamic objects in a virtual light field

 68/95

5 Conclusions
In Chapter 1 we set out our aim for this project, which was to add movable

geometry to the existing VLF solution which would be shaded realistically at

interactive frame rates.

In Chapter 2 relevant existing literature was reviewed. The most relevant

existing approach is incremental progressive radiosity, which depends on the

hierarchical nature of existing efficient radiosity solutions and aims to provide a

physically accurate result by changing the parts of the existing GI solution affected by

the re-positioning of existing geometry. This project approaches the problem from the

opposite starting point. Approximations of increasing complexity were used to

integrate additional simple, movable geometry to the VLF solution.

In Chapter 3 the implementation of these approximations was described. The

accuracy of these approximations increase with each milestone, culminating in an

advanced VLF shading mode which integrates the light incident on the dynamic

object from the VLF in order to shade the object in a manner that accounts for

received diffuse inter-reflection and received shadow from the scene.

In Chapter 4 the results of these approximations were presented and discussed.

This final chapter draws together the conclusions from the work implemented in

the project. Two main methods of integrating additional dynamic geometry to an

existing VLF solution were developed.

The first (basic) mode shades the dynamic object by approximating the existing

light source using an OpenGL light and allows the dynamic object to cast hard

shadows into the scene using shadow mapping. This method would allow interactive

rates on a high spec consumer PC such as that used in the original VLF paper
20

.

However it doesn’t account for shadows cast by existing geometry and it doesn’t

account for diffuse inter-reflection. Frame render times for scenes containing large or

numerous specular reflectors would be badly affected in coherent mode due to the

simple intersection routines used to determine occlusion. These drawbacks can be

easily addressed with some further work. (See next section).

The second (advanced) shading mode uses data from the VLF to integrate the

incident radiance on the dynamic object surfaces. This method is visually superior to

the light approximation method because it accounts for shadows cast by existing

geometry and accounts for diffuse inter-reflection received on the dynamic object.

Shadow mapping is used again to cast shadows from the dynamic object into the

scene. Frame rates in specular scenes suffer from the same specular occlusion

determination issue as for the first method. The time taken by this method scales

linearly in number of VLF directions, number of visible dynamic surface vertices and

the log of the average number of polygons per VLF tile. This means that render time

is dependent on the resolution of the VLF and the complexity of the dynamic object.

Visual quality of the dynamic object shading can be altered by two parameters: The

number of sample points (fewer is faster but less accurate), and the number of

directions sampled (sampling only half the directions takes half the time, but is also

less accurate). Interactive rates would be possible on the original VLF hardware
20

 but

20 Dual Xeon 1.7GHz with GPU

Interactive dynamic objects in a virtual light field

 69/95

only for simple (low vertex count) dynamic objects and low VLF resolution (513

directions). However further work (next section) can improve frame rates.

The two methods provide two levels of visual quality. Either of which could be

acceptable depending on the application. The simple mode sacrifices accuracy of

shading for faster frame rates and scales well in the number of objects. The advanced

mode provides dynamic objects which react more realistically to the existing light in a

scene – but take far longer to render. The method doesn’t scale well in number of

dynamic objects given the relatively large amount of time taken to gather diffuse light

on the object.

5.1 Further work

5.1.1 Specular surfaces

The VLF implementation this work was based on models only perfect diffuse or

perfect specular surfaces. This project has focused mainly on perfect diffuse materials

for two reasons: because diffuse surfaces are more common in natural scenes and

therefore more likely to be of use in VR experiments; because the work required to

implement diffuse shading involves a deeper understanding of the VLF techniques.

This focus means that two important areas of a global illumination solution have

been put to one side. Neither method implemented here displays the reflection of the

dynamic object or its shadow in the specular reflectors in the scene. Also neither

method allows for dynamic objects with specular surfaces.

To achieve good quality specular reflections at interactive frame rates the

existing VLF work draws on the coherent ray-tracing techniques of Wald et al [32].

Implementing specular dynamic objects and the allowing for the reflections of

dynamic objects in existing specular surfaces at a similar frame rate and visual quality

as the existing static surfaces would require defining the dynamic object in terms of

an efficient axis aligned BSP tree and allowing intersections to proceed in parallel via

SIMD. The fast triangle intersector class in the existing VLF code would be a good

starting point for this further work.

When considering reflections using ray-tracing you need to be able to determine

the colour at the intersection point on the dynamic object. For this reason it may be

worth using the diffuse texture map assigned to each vlf::face object to store the

results of shading the dynamic object. This has implications for the performance of

the advanced diffuse shading mode because we could no longer avoid gathering

diffuse light for vertices on surfaces facing away from the camera. As reflections are

often small perhaps reflected colour could be approximated by gathering the light at

only one point at the centre of each reflected vlf::face which doesn’t face the camera

to save time.

5.1.2 Static specular occlusion

Even without a full coherent intersection implementation for the dynamic object

it is possible to address the slow-down caused by interrupting the existing coherent

ray intersection implementation when determining occlusion of specular objects.

Instead of using ray-tracing to determine which primary rays hit a specular

surface a rasterisation method similar to that used for the low quality progressive

mode can be used to work out which pixels need ray intersection calculations with the

static scene. This would avoid interrupting the coherent code with non-optimized

Interactive dynamic objects in a virtual light field

 70/95

dynamic object ray intersection operations. However this wouldn’t address the issue

of reflecting the dynamic object in existing specular surfaces.

5.1.3 Dynamic diffuse occlusion

Currently there is no occlusion testing done before gathering the diffuse

radiance for a vertex in the advanced shading mode. If this vertex is occluded from

the camera view and doesn’t contribute to the interpolation of a neighbouring vertex

in the same face then it doesn’t need a colour assigning.

5.1.4 Hard shadow reflections

Ray-tracing determines the reflections in specular surfaces and ray-tracing is an

object space method. Shadow mapping is an image space method. As a result it is not

trivial to reflect the shadows formed via shadow mapping in the specular surfaces of

the scene. Shadow volumes would be a preferable approach from this point of view.

However reflections of shadows from shadow maps could perhaps be rendered by

rendering the shadow map from the reflected point of view for each mirror in the

scene.

5.1.5 Soft shadows

The shadow mapping technique could be enhanced to blend together shadow

projections from multiple points on a light source. Or a filtering technique such as

percentage closer filtering could be used to blur the edges of the hard shadow. Either

of these techniques could be implemented to take only a constant multiple of the time

taken for hard shadows, which is still well within interactive frame rates.

5.1.6 Importance sampling

In this implementation the time taken for diffuse gathering in the advanced

shading mode can be halved by sampling only half the incident directions. This

method biases the result in favour of the directions lower in the hemisphere above a

surface normal because of the design of the linear indexing into the hemisphere. More

intelligent methods of importance sampling could be devised.

5.1.7 Caching

Once a point on a diffuse surface has had the light gathered the result could be

cached along with the direction of the surface normal. When gathering light this cache

could be visited first. The values could be stored in some form of space subdivision

structure like a kd-tree. If a value is available within some threshold distance of the

required point it could be reused. The angle of the required surface normal would also

need to be considered. Perhaps radiance values over large solid angles over the sphere

of directions at that point could grouped together. Such a solution would benefit

applications where objects often passed the same set of points in space.

5.1.8 Exploit coherence in diffuse gathering

The current implementation gathers the diffuse radiance at the vertices of a

polygon and interpolates between vertices. A higher resolution method would be to

gather incident radiance for every texel in the diffuse texture map assigned to a

vlf::face. However to loop over every VLF direction for every texel is much too

expensive. Each PSF direction stores a radiance map of radiance travelling in that

direction. Combined with the visibility calculation this map could be projected onto

Interactive dynamic objects in a virtual light field

 71/95

the dynamic diffuse texture map for each direction in turn using the GPU. This may

provide a crude approximation of the diffuse irradiance for all texels in a dynamic

surface texture map at an interactive rate.

5.1.9 Parallel processing

Diffuse gathering and specular rendering could be performed in parallel. Or

diffuse gathering could split between processors on a face by face basis.

5.1.10 OpenGL light parameter estimation

The basic shading mode uses an OpenGL light to approximate the first light

source in the scene. This assumes only one light emitter. It is trivial to change the

implementation to approximate more than one light source, but currently the lighting

parameters are chosen manually. A method of approximating suitable values for the

diffuse and ambient parameters of the light should be easy to implement.

5.1.11 Receiving hard shadows during basic shading

One drawback of the basic shading using an OpenGL light is that the dynamic

object doesn’t receive shadows from static geometry in the scene. It would be simple

to extend the shadow mapping implementation to also render shadows from the

existing scene geometry onto the dynamic object.

Interactive dynamic objects in a virtual light field

 72/95

6 Bibliography
[1] Heckbert, P. Adaptive Radiosity Textures for Bidirection Ray Tracing.

SIGGRAPH 24, 145-154. 1990.

[2] Khanna, P., Slater, M., Mortenson, J., Yu, I. A Virtual Light Field for

Propagation and Walkthrough of Globally Illuminated Scenes. Proceedings of

Computer Graphics International, 2004

[3] Slater, M., Steed, A., Chrysanthou, Y. Computer Graphics and Virtual

Environments, from realism to real-time. Addison Wesley. ISBN: 0-201-62420-6

[4] Khanna, M., Mortenson, J., Yu, I. P., Slater, M. A Visibility Field for

Dynamic Ray Tracing,, Interim Technical Report,

http://www.cs.ucl.ac.uk/research/vr/Projects/VLF/Media/vlfDynamicRTpaper/index.h

tm, 2004

[5] Goral, C. Torrance, K., Greenberg, D. Battaile, B. Modelling the interaction

of light between diffuse surfaces. Computer Graphics (ACM SIGGRAPH ’84

Proceedings), vol. 18, pp. 212–222. 1984.

[6] Damez, C, Dmitriev, K and Myszkowski, K. State of the Art in Global

Illumination for Interactive Applications and High-quality Animations.

Computer Graphics Forum, 21(4):55-77, 2003

[7] Cohen, M. F., Chen, S. Wallace, J., Greenberg, D. A Progressive Refinement

Approach to Fast Radiosity Image Generation. Computer Graphics, Volume 22,

Number 4, August 1988

[8] Cohen, M. F., Greenberg, D. P., Immel, D. S. An Efficient Radiosity

Approach for Realistic Image Synthesis. IEEE Computer Graphics and

Applications, March 1986 pp 26-35.

[9] Lischinski, D. Tampieri, F. Greenberg, D.P. A Discontinuity Meshing

Algorithm for Accurate Radiosity. IEEE CG&A, 1992

[10] Sillion, F., Puech, C. Radiosity & Global Illumination. Morgan Kaufmann

Publishers, Inc. ISBN 1-55860-277-1

[11] Lombard, M., Ditton, T. B. At the heart of it all: The concept of presence.

1997. http://jcmc.indiana.edu/vol3/issue2/lombard.html

[12] Slater, M., Linakis, V., Usoh, M., Kooper, R. Immersion, Presence, and

Performance in Virtual Environments: An Experiment using Tri-Dimensional
Chess. http://www.cs.ucl.ac.uk/external/M.Usoh/Papers/Chess/index.html

[13] Welch, R. B., Blackmon, T. T., Liu, A., Mellers, B. A. and Stark, L. W. The

effects of pictorial realism, delay of visual feedback, and observer interactivity on
the subjective sense of presence. Presence-Teleoperators and Virtual Environments

5, 263-273 (1996).

[14] Thompson, W.B., Shirley, P., Smits, B., Kersten, D.J. and Madison, C. Visual

Glue, http://www2.cs.utah.edu/vissim/papers/glue/glue.html, 1998.

[15] Slater, M., Usoh, M., Chrysanthou, Y. The Influence of Dynamic Shadows

on Presence in Immersive Virtual Environments,
http://www2.cs.ucy.ac.cy/~yiorgos/publications/influence_of_shadows95.pdf

Interactive dynamic objects in a virtual light field

 73/95

[16] Hasenfratz, J.-M., Lapierre, M., Holzschuch, M. and Sillion, F.X. A Survey of

Real-time Soft Shadows Algorithms. State of the art report, Eurographics 2003.

[17] Crow, F.C., Shadow algorithms for computer graphics. Computer Graphics

(SIGGRAPH 1977)

[18] Everitt, C., Rege, A., Cebenoyan, C. Hardware shadow mapping.

http://developer.nvidia.com/object/hwshadowmap_paper.html

[19] Williams, L. Casting Curved Shadows on Curved Surfaces. Computer

Graphics (SIGGRAPH 1978)

[20] Stamminger, M. and Drettakis, G. Perspective Shadow Maps. (SIGGRAPH

2003)

[21] Reeves, W.T., Salesin, D. H. and Cook, R. L. Rendering antialiased

shadows with depth maps. Computer Graphics (SIGGRAPH 1987)

[22] McGuire, M., Hughes, J.F., Egan, K.T., Kilgard, M. J. and Everitt, C.. Fast,

Practical, and Robust Shadows.
http://developer.nvidia.com/object/fast_shadow_volumes.html

[23] Chen, S. Incremental radiosity: an extension of progressive radiosity to an

interactive image synthesis system. Computer Graphics, Volume 24, Number 4,

August 1990.

[24] George, D., Sillion, F. and Greenberg, D. Radiosity redistribution for

dynamic environments. IEEE Computer Graphics and Applications, 10(4):26–34,

1990.

[25] Hanrahan P,.Salzman, D, Aupperle, L. A rapid hierarchical radiosity

algorithm. SIGGRAPH 1991 proceedings.

[26] Forsyth, D., Yang, C. Teo, K. Efficient Radiosity in dynamic environments.

Eurographics 1994.

[27] Drettakis, G., Sillion, F. Interactive update of global illumination using a

line-space hierarchy. SIGGRAPH 1997 proceedings.

[28] Granier, X., Drettakis, G. Incremental updates for rapid glossy global

illumination. Eurographics 2001.

[29] Glassner, A. S., Space Subdivision for Fast Ray Tracing, IEEE Computer

Graphics and Applications, 4(10), October 1984, pp. 15-22.

[30] Arvo, J., Kirk, D., Fast Ray Tracing by Ray Classification. Computer

Graphics, Volume 21, Number 4, 1987.

[31] Rubin, S., Whitted, T. A 3-Dimensional Representation for Fast Rendering

of Complex Scenes. ACM 1980.

[32] Wald, I., Slusallek, P., Benthin, C. and Wagner, M. Interactive Rendering

with Coherent Ray Tracing. Eurographics 2001, Volume 20, Number 3.

[33] Slater, M. Constant time queries on Uniformly Distributed Points on a

Hemisphere, Journal of Graphics Tools, 7(1):33-33. (2002)

[34] Udeshi, T., Hansen, C. Towards interactive rendering of indoor scenes:

ahybrid approach. Eurographics 1999.

[35] Keller, A. Instant Radiosity. SIGGRAPH 1997.

Interactive dynamic objects in a virtual light field

 74/95

[36] Gautron, P., Krivánek, J., Bouatouch, K., Pattanaik, S. Radiance Cache

Splatting: A GPU-Friendly Global Illumination Algorithm. Eurographics 2005

[37] Wald, I., Kollig, T., Benthin, C., Keller, A., Slusallek, P. Interactive Global

Illumination. Technical Report TR-2002-02

[38] Jaroslav K., Gautron, P., Pattanaik, S. Bouatouch, K. Radiance caching

for efficient global illumination computation.
http://www.irisa.fr/bibli/publi/pi/2004/1623/1623.html. 2004

[39] Ward, G., Simmons, L.M., The Holodeck Interactive Ray Cache. (1999)

ACM Transactions on Graphics, 18(4):361-98.

[40] Jensen, H. Global Illumination using Photon Maps. Rendering Techniques

'96 (Proceedings of the Seventh Eurographics Workshop on Rendering), pages 21-30,

1996.

[41] Larsen, B., Christensen, N. Simulating Photon Mapping for Real-time

Applications. Eurographics symposium on rendering 2004.

Interactive dynamic objects in a virtual light field

 75/95

Listing 1 Cube definition
For all listings a shaded background indicates new code written as part of this

implementation. For brevity large chunks of code not essential to understanding are

cut out. This is indicated with ‘…’

namespace dynamic {
…

GLfloat n[6][3] = { /* Normals for the 6 faces of a cube. */
 {0.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, {0.0, 0.0, -1.0},
 {-1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, -1.0, 0.0} };

GLint faces[6][4] = { /* Vertex indices for the 6 faces of a cube. */
 {0, 1, 2, 3}, {1, 4, 5, 2}, {4, 7, 6, 5},
 {7, 0, 3, 6}, {3, 2, 5, 6}, {7, 4, 1, 0} };

GLfloat v[8][3]; /* Will be filled in with X,Y,Z vertexes. */
 …

 vlf::faceset<MY_FACE_TYPE, MY_INDEX_TYPE, MY_FLOAT_TYPE, 4, MY_TEXTURE_TYPE>
myIndexedFaceSet;
}

void dynamic::initBox()
{
 …

 // setup vertex data structures
 glib::point3D<MY_FLOAT_TYPE> vertex[8];
 // Choose cube extents to fit world co-ordinate system. This provides a small cube
compared to the room dimensions
 float minimumExtent = -0.05f;
 float maximumExtent = 0.05f;

 int vertexIndWithSameComponentMin[] = {0,3,7,6, 0,1,4,7, 4,5,6,7}; // groups of 4 for the
same component
 int vertexIndWithSameComponentMax[] = {1,2,4,5, 3,2,5,6, 0,1,2,3}; // groups of 4 for the
same component

 // setup material structures - not actually used but required for class initialisation
 typedef glib::colourRGB<MY_FLOAT_TYPE> colorType;
 glib::standardMaterial<MY_FLOAT_TYPE,colorType>* mRed=new
glib::standardMaterial<MY_FLOAT_TYPE,colorType>;
 mRed->diffuse(COLOUR_CORNELL_RED);
 mRed->emission(COLOUR_BLACK);
 mRed->ks(0.0f);
 mRed->kd(1.0f);

 /* Assign cube vertex data. */
 for(int i=0;i<12;i++) {
 glib::point3D<MY_FLOAT_TYPE>& vMin = vertex[vertexIndWithSameComponentMin[i]];
 glib::point3D<MY_FLOAT_TYPE>& vMax = vertex[vertexIndWithSameComponentMax[i]];
 switch(i/4) // integer division to determine component to set
 {
 case 0:
 vMin.X(minimumExtent);
 vMax.X(maximumExtent);
 break;
 case 1:
 vMin.Y(minimumExtent);
 vMax.Y(maximumExtent);
 break;
 case 2:
 vMin.Z(minimumExtent);
 vMax.Z(maximumExtent);
 break;
 }
 }

 // Add vertices to faceset, assume first returned index is 0
 for (int i =0; i<8; i++) {
 myIndexedFaceSet.addVertex(vertex[i]);
 …

 }

Interactive dynamic objects in a virtual light field

 76/95

 for (int i =0; i<8; i++) { // cube is centred on origin so normals are same as vertices
 std::cout << "Normal: " << myIndexedFaceSet.addNormal(
 vertex[i].asVector().normalized()
) << std::endl;
 }

 unsigned int mInd = myIndexedFaceSet.addFaceMaterial(mRed);

 // add faces to faceset

 for(int i=0;i<6;i++) {

 // add each cube face as two triangles
 myIndexedFaceSet.addFace(MY_FACE_TYPE(faces[i][0],faces[i][1],faces[i][2],
 faces[i][0],faces[i][1],faces[i][2],
mInd)
);
 myIndexedFaceSet.addFace(MY_FACE_TYPE(faces[i][2],faces[i][3],faces[i][0],
 faces[i][2],faces[i][3],faces[i][0],
mInd)
);
 …

}

Interactive dynamic objects in a virtual light field

 77/95

Listing 2 Low quality progressive mode including
dynamic object
void display(void) {
 …

 else if (renderType==RENDER_PROGRESSIVE)
 {
 // SORT OUT lo-quality specular map if necessary
 if (!highQualitySpecularReady)
 {
 util::timer<__MHZ> glCalcSpecularTimer;
 double glCalcSpecularSecs;
 glCalcSpecularTimer.start();
 if (reSampledTRM)

 myVLF.glRaytraceSpecular(specularCam,loQualitySpecularMap,loQualityIndexMap,thebackground
Index,NULL,backBuf,1.0);
 else

 myVLF.glRaytraceSpecular(specularCam,loQualitySpecularMap,loQualityIndexMap,thebackground
Index,NULL,backBuf,radianceScaling);

 glCalcSpecularSecs = glCalcSpecularTimer.stop();
 std::cout << frameNo << " CalcLoSpec: " << glCalcSpecularSecs << std::endl;
 }

 // cut out code setting up GL state etc
 …

#ifdef DO_DYNAMIC_OBJECT
 // begin JDW
 // visualise all faces
 // this places the box correctly in the depth buffer for diffuse surfaces
 if(showDynamicObject) {
 glDisable(GL_TEXTURE_2D);
 for (unsigned int i=0;i<dynamic::myIndexedFaceSet.faceCount();i++) {
 dynamic::myIndexedFaceSet.visualiseFace(i,false,false,true,COLOUR_WHITE,true);
 }
 glEnable(GL_TEXTURE_2D);
 }
 // end JDW
#endif

 const bool showDiffuse = true;
 if(showDiffuse) {
 for (unsigned int f=0;f<myVLF.scene().faceCount();f++)
 {
 glBindTexture(GL_TEXTURE_2D, diffuseTextures[f]);
 glBegin(GL_POLYGON);
 for (unsigned int v=0;v<myVLF.scene().vertexCount(f);v++)
 {
 // map a vertex into its diffuse map
 // JDW Note this homogenize/dehomogenize technique is used often.
 // The transform matrices have 4 dimensions and so to multiply by a vector
 // we need to transform to a vector4D with homogenize and then convert the
 // result back to vector3D with dehomogenize()
 glib::point3Df tc=
 (myVLF.scene().getFace(f)->toCanonical()
 * myVLF.scene().vertexWC(f,v).homogenize()).dehomogenize();
 // convert value to a texcoord between 0-1
 float s=tc.X()/myVLF.scene().getFace(f)->faceExtents.xSize();
 float t=tc.Z()/myVLF.scene().getFace(f)->faceExtents.ySize();
 if (doTexCoordShift)
 {
 // we want to shift half a pixel in texture space:
 … // cut

 }
 // apply texture coordinate scaling it to account for a differently
 // size actual opengl texture [power of two texture]

 glTexCoord2f(MAX2(0,s*diffuseScaleFactors[f*2]),MAX(0,t*diffuseScaleFactors[f*2+1]));

Interactive dynamic objects in a virtual light field

 78/95

 myVLF.scene().vertexWC(f,v).glApply();
 }
 glEnd();
 }
 } // showDiffuse

 const bool showSpecular=true;

 if(showSpecular) {
 if (highQualitySpecularReady)
 {
 // fillin texture
 … // cut

 }

 else
 {
 // fillin texture
 … // cut

 }

 // render a polygon onto the screen textured with the specular texture
 // set GL state
 … //cut

 // setup the texture
 … // cut

 // Generate The Texture

 glTexImage2D(GL_TEXTURE_2D,0,4,specularTexures,specularTexvres,0,GL_RGBA,GL_FLOAT,specula
rBuf);

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

 //
 // draw polygon
 glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
 glBegin(GL_QUADS);
 … // cut

 glEnd();
 } // showSpecular

 } // end else
 …

} // end display()

vlf::cachedVLF<> { // from vlfCachedVLF.h

 …

 // false colour raycasts specular surfaces only,
 // returns an image of the colours and an index map, which has the backgroundIndex
 // in pixels where a specular surfaces wasn't to be found
 bool glRaytraceSpecular(…)

 {

 … // cut

 util::glContextHolder ctx;
 if (pbuf)
 ctx.saveContext();

 // save GL state
 glPushAttrib(GL_ALL_ATTRIB_BITS);
 glPushMatrix();

 // make the backbuffer current
 if (pbuf)
 if (!pbuf->makeCurrent())
 {
 std::cerr << "ERROR: vlf::cachedVLF::glRaytraceSpecular, could not make create
off-screen GL buffer current" << std::endl;

Interactive dynamic objects in a virtual light field

 79/95

 return false;
 }

 util::colourIndex colI;
 colI.getBitCounts();
 unsigned char biR,biG,biB,biA;
 colI.index2RGBA(&biR,&biG,&biB,&biA,backgroundIndex);

 // set clear colour, we clear buffer with the non mask index!

 glClearColor((float)biR/255.0f,(float)biG/255.0f,(float)biB/255.0f,(float)biA/255.0f);
 glClearDepth(1.0);

 // clear buffers
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 // set up viewing
 … // cut

 // render the faces in false colour
 // specular faces are rendered with their index and diffuse faces
 // with the background colour
 unsigned char R,G,B,A;
 for (unsigned f=0;f<m_scene.faceCount();f++)
 {
 // set the indexed colour or background
 if (((VLF_MATERIAL_TYPE*)m_scene.faceMaterial(f))->ks()>0)
 {
 //pbuf.colourIndex.index2RGBA(&R,&G,&B,&A,f);
 colI.index2RGBA(&R,&G,&B,&A,f);
 glColor4ub(R,G,B,A);
 }
 else
 glColor4ub(biR,biG,biB,biA);

 // render face
 glBegin(GL_POLYGON);
 for (unsigned int i=0;i<m_scene.vertexCount(f);i++)
 m_scene.vertexWC(f,i).glApply();
 glEnd();
 } // for f

#ifdef DO_DYNAMIC_OBJECT
 if(accountForDynamicObjectInProgSpec) {
 // begin JDW
 // account for our dynamic object in the specular map - make it appear
 // like a regular diffuse object so it can show through the specular 'mask'

 // make object diffuse by setting colour corresponding to background index
 glColor4ub(biR,biG,biB,biA);
 for (unsigned int i=0;i<dynamic::myIndexedFaceSet.faceCount();i++) {
 dynamic::myIndexedFaceSet.visualiseFaceInheritColour(i,true); // draw the
outline as in normal rendering
 }
 }
 // end JDW
#endif // DO_DYNAMIC_OBJECT

…

 // read back the back-buffer to main memory
 glReadPixels(0,0,cam.uRes(),cam.vRes(),GL_RGBA,GL_UNSIGNED_BYTE,backBuf);

…

 unsigned long int colorIndex;
 // build index buffer from back-buffer in memory
 … // cut
…

 // vars to work out pixel centre incrementally
 glib::point3D<FLOAT_TYPE> pixelCentre;
 glib::point3D<FLOAT_TYPE> eye=cam.Eye();
 … // cut

Interactive dynamic objects in a virtual light field

 80/95

 glib::ray3D<FLOAT_TYPE> rayFromFace;
 FLOAT_TYPE depth=0;
 // now build image
 for (unsigned int y=0;y<cam.vRes();y++)
 {
 pixelCentre=pixelCentreOrigin+((FLOAT_TYPE)y)*vVec;
 for (unsigned int x=0;x<cam.uRes();x++)
 {
 // update pixel centre
 pixelCentre=pixelCentre+uVec;

 glib::index2Dui pixelIndex(x,y);
 glib::index2Dui pixelIndexRev(x,specularMap.vRes()-1-y);
 glib::colourRGB<FLOAT_TYPE> c1,c2,c3,color(0,0,0);

 // check if we have a background pixel
 unsigned int faceIndex=indexMap(pixelIndex).R();
 if (faceIndex==backgroundIndex)
 continue;

 // retrieve the pixel
 glib::ray3D<FLOAT_TYPE> ray=
 glib::ray3D<FLOAT_TYPE>(eye,(pixelCentre-eye).normalized());

…

 // find depth of face
 m_scene.intersectionDepth(depth,faceIndex,ray);
…

 // find the three nearest PSFs
 DIR_TYPE n1,n2,n3;
 FLOAT_TYPE kn1,kn2,kn3;
 if
(m_directions.triangleItem(&n1,&n2,&n3,&kn1,&kn2,&kn3,ray.Orientation().normalized()))
 {
#ifdef DIRECTION_AREA_EFFECTS_TRILINEAR_VIEWING
#ifdef PROPAGATE_USING_SOLID_ANGLE_AREAS
 // Scale up radiance value as viewing is not a function of solid angles,
rather that of rays...
 kn1 /=n1.areaWeight();
 kn2 /=n2.areaWeight();
 kn3 /=n3.areaWeight();
#endif
#endif
 rayFromFace.Origin(ray.Origin()+(ray.Orientation()*depth));
 rayFromFace.Orientation(ray.Orientation().inverted());
 }
 else
 {
 specularMap(pixelIndex)=COLOUR_GREEN;
 continue;
 }

 // check that we have a valid face here
 //unsigned faceIndex=indexMap(pixelIndex).R();
 if (faceIndex<m_scene.faceCount())
 {
 bool r1=false,r2=false,r3=false;

…

 r1=getSample(n1.m_linearIndex,c1,rayFromFace,faceIndex);
 r2=getSample(n2.m_linearIndex,c2,rayFromFace,faceIndex);
 r3=getSample(n3.m_linearIndex,c3,rayFromFace,faceIndex);

…

 if (r1 && r2 && r3)
 {
 color=scaling*((kn1*c1)+(kn2*c2)+(kn3*c3));
 specularMap(pixelIndex)=color;
 indexMap(pixelIndex).R()=faceIndex;
 continue;

 }
 else if (r1 || r2 || r3)
 {

Interactive dynamic objects in a virtual light field

 81/95

 … // cut

 specularMap(pixelIndex)=color;
 indexMap(pixelIndex).R()=faceIndex;
 continue;
 }
 else
 specularMap(pixelIndex)=COLOUR_RED;
 }

 // if we fell through to here we couldn't get a specular value
 indexMap(pixelIndex).R()=backgroundIndex;
 }
 }

…

 return true;
 }; // glRaytraceSpecular

} // end of object definition vlf::cachedVLF<>

//This method was added to sg::faceset (file sgFaceset.h)
// Begin JDW
 // We want to render a face in the existing colour only - for use when rendering false
colour indexmap for dynamic object
 void visualiseFaceInheritColour(FACE_INDEX_TYPE f,bool outline=false)
 {
 if (vertexCount(f)<3) return;
 #ifdef _GL_AVAILABLE
 glPushAttrib(GL_ALL_ATTRIB_BITS);
 glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
 glEnable(GL_CULL_FACE);
 glCullFace(GL_BACK);

 glDisable(GL_LIGHTING);

 glMatrixMode(GL_MODELVIEW);

 if (outline)
 {
 glEnable(GL_POLYGON_OFFSET_FILL);
 glPolygonOffset(1.0,1.0);
 }

 // now render the face
 glBegin(GL_POLYGON);
 for (unsigned int i=0;i<vertexCount(f);i++)
 {
 glib::point3D<FLOAT_TYPE> v=vertexWC(f,i);
 glVertex3f(v.X(),v.Y(),v.Z());
 }
 glEnd();

 // render the outline if required
 if (outline)
 {
 glDisable(GL_POLYGON_OFFSET_FILL);
 glPolygonMode(GL_FRONT,GL_LINE);

 // now render the covered pixel
 glBegin(GL_POLYGON);
 for (unsigned int i=0;i<vertexCount(f);i++)
 {
 glib::point3D<FLOAT_TYPE> v=vertexWC(f,i);
 glVertex3f(v.X(),v.Y(),v.Z());
 }
 glEnd();
 }

 glPopAttrib();
 #else
 std::cerr << "ERROR: sg::faceset::visualiseFace, gl not available" <<
std::endl;
 #endif
 };
// End JDW

Interactive dynamic objects in a virtual light field

 82/95

Listing 3 High quality progressive mode including
dynamic object

See Listing 2 for the relevant part of the display() method.

void progressiveRenderer(void *dummy)
{
 std::cout << "render thread started!" << std::endl;
 finishedProgressiveRenderThread.ResetEvent();

 if
(hiQualitySpecularMap.uRes()!=specularCam.uRes()||hiQualitySpecularMap.vRes()!=specularCam.v
Res()||

 hiQualityIndexMap.uRes()!=hiQualitySpecularMap.uRes()||hiQualityIndexMap.vRes()!=hiQualit
ySpecularMap.vRes())
 {
 std::cerr << "ERROR: progressiveRenderer, hiQualitySpecularMap wrong size" <<
std::endl;
 exit(1);
 }

 while (runProgressive)
 {
 //interrupted:
 if (!highQualitySpecularReady)
 {
 //util::timer<__MHZ> comptime;
 //comptime.start();

 interruptRendering=false;
 // redo specular image
 for (unsigned int y=0;y<specularCam.vRes();y++)
 {
 for (unsigned int x=0;x<specularCam.uRes();x++)
 {
 if (interruptRendering)
 {
 //comptime.stop();
 goto interrupted;
 }

 glib::index2Dui pixelIndex(x,y);

 // this is the pixel through which the ray travels
 glib::window3D<MY_FLOAT_TYPE> pixel=specularCam.pixelWC(pixelIndex);

 // now construct a normalized ray going from eye through pixel
 glib::ray3D<MY_FLOAT_TYPE>
ray=glib::ray3D<MY_FLOAT_TYPE>(specularCam.Eye(),(pixel.center()-
specularCam.Eye()).normalized());

 // check if we have a specular reflection in this pixel
 glib::intersectionInfo<float> ix;
 unsigned ixFace=0;

#ifdef DO_DYNAMIC_OBJECT
 // begin JDW
 /*
 Original test is:
 If this ray doesn't intersect the scene
 OR
 It does intersect the scene but intersected face is diffuse
 THEN
 place backgroundIndex pixel in hiQualityIndexMap

 Add some variables for a second intersection test - to be applied only
 if we find a specular surface - this way we override what would have
 been incorrect depth rendering only when needed
 */
 glib::intersectionInfo<float> dynIx;
 unsigned dynIxFace=0;
#endif

Interactive dynamic objects in a virtual light field

 83/95

 // end JDW
 if ((!myVLF.scene().faceIntersection(ixFace,ray,&ix,0.00001f,true)) ||
 (((VLF_MATERIAL_TYPE*)myVLF.scene().faceMaterial(ixFace))->ks()==0))
 {
 hiQualityIndexMap(glib::index2Dui(x,hiQualitySpecularMap.vRes()-1-
y)).R()=thebackgroundIndex;

 continue;
 }
#ifdef DO_DYNAMIC_OBJECT
 if(accountForDynamicObjectInProgSpec) {
 // begin JDW
 // we have hit a specular surface - BUT it could be occluded by the dynamic
object
 // so check for an earlier intersection point and if found place the
background
 // index in this pixel

 if (

 (dynamic::myIndexedFaceSet.faceIntersection(dynIxFace,ray,&dynIx,0.00001f,true))
 &&(dynIx.t() <= ix.t())
)
 {
 hiQualityIndexMap(glib::index2Dui(x,hiQualitySpecularMap.vRes()-1-
y)).R()=thebackgroundIndex;
 continue;
 }
 }
 // end JDW
#endif

 // we have a specular reflection trace until diffuse surface is struck
 bool foundDiffuse=false;
 int recursiveDepth=0;
 do
 {
 // sort out new ray
 ray.Origin()=ray.Origin()+(ray.Orientation()*ix.t());

 ray.Orientation(ray.Orientation().inverted().reflected(myVLF.scene().faceNormalWC(ixFace)
));

 if (!myVLF.scene().faceIntersection(ixFace,ray,&ix,0.00001f,true))
 break;
 else
 foundDiffuse=
(((VLF_MATERIAL_TYPE*)myVLF.scene().faceMaterial(ixFace))->kd() >1E-9);

 if (interruptRendering)
 {
 //comptime.stop();
 goto interrupted;
 }
 }
 while ((!foundDiffuse) && (++recursiveDepth<MAX_SPECULAR_RAYTRACE_DEPTH));

 // handle traced ray
 if (foundDiffuse)
 {
 //hiQualityIndexMap(pixelIndex).R()=ixFace;
 hiQualityIndexMap(glib::index2Dui(x,hiQualitySpecularMap.vRes()-1-
y)).R()=ixFace;

 glib::point3D<MY_FLOAT_TYPE> ixp=ray.Origin()+(ray.Orientation()*ix.t());

 // map this to a diffuse pixel on its total diffuse map
 glib::point3Df tdmp=
 ((myVLF.scene().getFace(ixFace)-
>toCanonical())*glib::point4Df(ixp.X(),ixp.Y(),ixp.Z(),1)).dehomogenize();

 // now the X and Z coordinates of this point indicate a point on
 // the diffuse map for ixFace, map this to an index + a fractional part

Interactive dynamic objects in a virtual light field

 84/95

 float tWR=myVLF.scene().getFace(ixFace)-
>faceExtents.xSize()/myVLF.scene().getFace(ixFace)->m_totalDiffuse.uRes();
 float tHR=myVLF.scene().getFace(ixFace)-
>faceExtents.ySize()/myVLF.scene().getFace(ixFace)->m_totalDiffuse.vRes();

 // make sure point is inside diffuse map
 float s = MAX2(0, MIN2(tdmp.X(), myVLF.scene().getFace(ixFace)-
>faceExtents.xSize()));
 float t = MAX2(0, MIN2(tdmp.Z(), myVLF.scene().getFace(ixFace)-
>faceExtents.ySize()));

 // extract integer index and fractional part
 glib::index2Dui index;
 glib::index2D<float> indexFractional;
 double n;
 indexFractional.U() = modf((s/tWR),&n);
 index.U()=n;
 indexFractional.V() = modf((t/tHR),&n);
 index.V()=n;

 if (index.U()<myVLF.scene().getFace(ixFace)->m_totalDiffuse.uRes()&&
 index.V()<myVLF.scene().getFace(ixFace)->m_totalDiffuse.vRes())
 {
 glib::colourRGB<MY_FLOAT_TYPE>
color=diffuseMaps[ixFace].bilinear(index,indexFractional);
 if (doToneMap)
 hiQualitySpecularMap(glib::index2Dui(x,hiQualitySpecularMap.vRes()-
1-y))=color;
 else
 hiQualitySpecularMap(glib::index2Dui(x,hiQualitySpecularMap.vRes()-
1-y))=color*radianceScaling;
 }
 else
 std::cerr << "ERROR: progressiveRenderer, missed diffuse map" <<
std::endl;
 }
 else
 {
 hiQualityIndexMap(glib::index2Dui(x,hiQualitySpecularMap.vRes()-1-
y)).R()=thebackgroundIndex;
 continue;
 }

 } //for {x}
 } //for {y}

 highQualitySpecularReady=true;

 }

interrupted:
 Sleep(progressiveRendererSleepMS);
 }
 finishedProgressiveRenderThread.SetEvent();
 std::cout << "render thread terminated!" << std::endl;
 _endthread();
} // progressiveRenderer

Interactive dynamic objects in a virtual light field

 85/95

Listing 4 Preserving correct surface normals after
object motion

From vlfGlutWalkThrough.cpp.

// inside display() for the coherent shading mode
…

for (unsigned int f=0;f<dynamic::myIndexedFaceSet.faceCount();f++)
{

 GLfloat glFaceNormal[3];
 dynamic::myIndexedFaceSet.transformedFaceNormalWCtransformedFaceNormalWCtransformedFaceNormalWCtransformedFaceNormalWC(f).get3fv(glFaceNormal);

 glib::point3D<MY_FLOAT_TYPE> v;
 glBegin(GL_POLYGON);
 for (unsigned int i=0;i<dynamic::myIndexedFaceSet.vertexCount(f);i++)
 {

 v=dynamic::myIndexedFaceSet.vertexWC(f,i);

 glNormal3fv(glFaceNormal);
 glVertex3f(v.X(),v.Y(),v.Z());
 }
 glEnd();

}
// display continues

From vlfFaceset.h

// added to get transformed face normals because now objects can move
glib::vector3D<FLOAT_TYPE> transformedFaceNormalWC(FACE_INDEX_TYPE f)
{
 // operate on this normal using only rotation matrices.
 return (normalTransformMatrix()* getFace(f)->n().homogenize()).dehomogenize() ;
}

Interactive dynamic objects in a virtual light field

 86/95

Listing 5 Shadow mapping implementation
From dynamic.h

 GLdouble glLightViewMatrix[16];
 GLdouble glLightProjectionMatrix[16];
 GLdouble glTextureMatrix[16];
 GLdouble glLightClipPlane[4];
 GLdouble glBiasMatrix[16] = { 0.5, 0.0, 0.0, 0.0,
 0.0, 0.5, 0.0, 0.0,
 0.0, 0.0, 0.5, 0.0,
 0.5, 0.5, 0.5, 1.0 };

 glib::transformationMatrixf textureMatrix;

 // will reference the shadow map texture
 GLuint shadowMapTexture;
 int shadowMapURes = 512;
 int shadowMapVRes = 512;
 bool removeReverseShadowProjection = true;
 bool noShadowOnBackFaces = true;

From dynamic.cpp

void dynamic::setupShadowLight(MY_SCENE_TYPE& scene, glib::bufferCameraf& worldCam) {
 int emitterInd=-1;

 for (unsigned int f=0;f<scene.faceCount();f++) {
 if(scene.getFace(f)->isEmitter()) {
 emitterInd = f;
 break;
 }
 }

 if(emitterInd<0) {
 std::cout << "No emitter in scene! Can't simulate light." << std::endl;
 return;
 }

 // find the centre of the emitter face - assume it's a rectangle
 // create a virtual light at the centre
 glib::point3D<MY_FLOAT_TYPE> p0 = scene.vertexWC(emitterInd,0);
 glib::point3D<MY_FLOAT_TYPE> p1 = scene.vertexWC(emitterInd,2);
 glib::vector3D<MY_FLOAT_TYPE> v = p1-p0;
 lightPos = p0 + v*0.5f;

 // look towards the centre of the dynamic object
 dynamic::lookAt = (myIndexedFaceSet.cumulativeTransformMatrix()
 * myIndexedFaceSet.boundingSphereWC().centre().homogenize()).dehomogenize();
 lightCam = glib::camera<MY_FLOAT_TYPE>(lightPos,
 lookAt,
 28,
 dynamic::shadowMapURes,
 dynamic::shadowMapVRes);

 glPushAttrib(GL_ALL_ATTRIB_BITS);
 glMatrixMode(GL_MODELVIEW_MATRIX);
 glPushMatrix();
 glLoadIdentity();

 lightCam.setGlu();
 glGetDoublev(GL_MODELVIEW_MATRIX, glLightViewMatrix);

 glLoadIdentity();

 gluPerspective(
 45.0f,
 1, // aspect ratio
 lightCam.Front(), // near clipping plane
 lightCam.Back() // far clipping plane
);

 glGetDoublev(GL_MODELVIEW_MATRIX, glLightProjectionMatrix);

Interactive dynamic objects in a virtual light field

 87/95

 // create texture for shadow map
 glGenTextures(1, &shadowMapTexture);
 glBindTexture(GL_TEXTURE_2D, shadowMapTexture);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, dynamic::shadowMapURes,
dynamic::shadowMapVRes, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

 glPopAttrib();
 glPopMatrix();

}

void dynamic::recalculateShadowLight(MY_SCENE_TYPE& scene, glib::bufferCameraf& worldCam) {

 // object moves - so adjust light direction
 // however the bounding sphere is calculated once and cached, so it
 // doesn't move from it's initial position - so take the cached initial centre
 // point and transform via the transform matrix in the faceset to
 // get current centre position

 dynamic::lookAt = (myIndexedFaceSet.cumulativeTransformMatrix()
 * myIndexedFaceSet.boundingSphereWC().centre().homogenize()).dehomogenize();

 dynamic::lightCam.lookAt(
 lightPos,
 lookAt,
 28,
 dynamic::shadowMapURes,
 dynamic::shadowMapVRes
);

 // setup glLightClipPlane plane equation from camera VRP and VPN
 // This is required to remove back projected shadow if we allow shadow piercing onto
 // surfaces with normals pointing away from light (we don’t any more)

 glLightClipPlane[0] = dynamic::lightCam.DOP().X();
 glLightClipPlane[1] = dynamic::lightCam.DOP().Y();
 glLightClipPlane[2] = dynamic::lightCam.DOP().Z();

 glLightClipPlane[3] = -1.0 * (lightCam.DOP().X() * lightPos.X() +
 lightCam.DOP().Y() * lightPos.Y() +
 lightCam.DOP().Z() * lightPos.Z());

 // lightPlance is used if we want to render this plane during debugging

 lightPlane.setNormal(dynamic::lightCam.DOP());
 lightPlane.setPosition(dynamic::lightPos);

 glMatrixMode(GL_MODELVIEW_MATRIX);
 glPushMatrix();
 glPushAttrib(GL_ALL_ATTRIB_BITS);

 glLoadIdentity();

 lightCam.setGlu();

 glGetDoublev(GL_MODELVIEW_MATRIX, glLightViewMatrix);

// perform calculation of glTextureMatrix using OpenGL
 glLoadMatrixd(glBiasMatrix);
 glMultMatrixd(glLightProjectionMatrix);
 glMultMatrixd(glLightViewMatrix);

 glGetDoublev(GL_MODELVIEW_MATRIX, glTextureMatrix);

 glPopMatrix();
 glPopAttrib();

 //Render shadow buffer from lights POV
 glPushAttrib(GL_ALL_ATTRIB_BITS);
 glPushMatrix();

Interactive dynamic objects in a virtual light field

 88/95

 //Write to Z-Buffer if drawn Z value is less than or equal to that in buffer
 glClearDepth(1.0f);
 glDepthFunc(GL_LEQUAL);
 glEnable(GL_DEPTH_TEST);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadMatrixd(glLightProjectionMatrix);

 glMatrixMode(GL_MODELVIEW);
 glLoadMatrixd(glLightViewMatrix);

 //Set viewport size to match shadow map
 glViewport(0, 0, dynamic::shadowMapURes, dynamic::shadowMapVRes);

 //Cull the front faces to use the back for depth comparison - eliminates shadow acne
 glCullFace(GL_FRONT);

 //No color reaches buffer so render flat for speed
 glShadeModel(GL_FLAT);
 glColor3f(1.0,1.0,1.0);
 glColorMask(1, 1, 1, 1);
 //glColorMask(0, 0, 0, 0);

 // draw object into depth buffer
 for (unsigned int i=0;i<dynamic::myIndexedFaceSet.faceCount();i++) {
 dynamic::myIndexedFaceSet.visualiseFace(i,false,false,false,COLOUR_WHITE,false);
 }

 //Copy depth buffer into shadow map
 glBindTexture(GL_TEXTURE_2D, shadowMapTexture);
 glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, dynamic::shadowMapURes,
dynamic::shadowMapVRes);

 //restore states
 glCullFace(GL_BACK);
 glShadeModel(GL_SMOOTH);
 glColorMask(1, 1, 1, 1);

 glPopAttrib();
 glPopMatrix();
}

// Remember that GL_EYE_LINEAR post multiplies by the current modelview matrix
// so this has to be set to the camera view matrix before calling this function.
void dynamic::renderShadow(MY_SCENE_TYPE& scene) {

 glPushAttrib(GL_ALL_ATTRIB_BITS);

 GLfloat rowvals[4];

 // convert column major to a row at a time
 for(int i=0;i<4;i++) {
 rowvals[i] = glTextureMatrix[(i*4)];
 }

 //texture coordinate generation.
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
 glTexGenfv(GL_S, GL_EYE_PLANE, rowvals);
 glEnable(GL_TEXTURE_GEN_S);

 for(int i=0;i<4;i++) {
 rowvals[i] = glTextureMatrix[(i*4)+1];
 }
 glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
 glTexGenfv(GL_T, GL_EYE_PLANE, rowvals);
 glEnable(GL_TEXTURE_GEN_T);

 for(int i=0;i<4;i++) {
 rowvals[i] = glTextureMatrix[(i*4)+2];
 }
 glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
 glTexGenfv(GL_R, GL_EYE_PLANE, rowvals);
 glEnable(GL_TEXTURE_GEN_R);

Interactive dynamic objects in a virtual light field

 89/95

 for(int i=0;i<4;i++) {
 rowvals[i] = glTextureMatrix[(i*4)+3];
 }

 glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
 glTexGenfv(GL_Q, GL_EYE_PLANE, rowvals);
 glEnable(GL_TEXTURE_GEN_Q);

 glBindTexture(GL_TEXTURE_2D, shadowMapTexture);
 glEnable(GL_TEXTURE_2D);

// wrapped in a define because the extension variable below comes from glew.h which could be
excluded
// not the neatest way but didn't want to remove code I already knew to be 'safe'
#ifdef DO_DYNAMIC_SHADOWS
 //Enable shadow comparison
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE);
#endif // DO_DYNAMIC_SHADOWS
 //Shadow comparison should be true if in shadow, i.e. if r>texture
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_ARB, GL_GREATER);

 //generate an intensity result (1 in all channels), alpha value will be 1
 glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE_ARB, GL_INTENSITY);

 // draw scene in black where it falls in shadow from the object

 // clip scene behind light because otherwise will get reverse shadow projection
 if(dynamic::removeReverseShadowProjection) {
 glClipPlane(GL_CLIP_PLANE0,glLightClipPlane);
 glEnable(GL_CLIP_PLANE0);
 }

 // Use these two for overwriting the destination colour and producing black shadows
 //glEnable(GL_ALPHA_TEST);
 //glAlphaFunc(GL_GEQUAL,0.99f);

 glEnable(GL_BLEND); // blend the shadow rather than overwriting the existing colour.
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 for (unsigned int f=0;f<scene.faceCount();f++)
 {
 if (((VLF_MATERIAL_TYPE*)scene.faceMaterial(f))->ks()>0) {
 continue;
 }

 // don't allow shadow to 'pierce' object on back faces, cull where
 // face normal points in same direction as VPN

 if(dynamic::noShadowOnBackFaces) {
 if ((dynamic::lightCam.VPN() dotProduct scene.faceNormal(f)) <= 0) {
 continue;
 }
 }

 //float fc = static_cast<float>(f)/static_cast<float>(scene.faceCount());
 //COLOUR_RED.glApply();
 //glColor3f(fc,1.0,1.0);
 // black shadows when used with alpha test
 //glColor3f(0.0,0.0,0.0);
 glColor4f(0.0, 0.0, 0.0, 0.5); // use alpha to preserve some destination colour
(blending)
 glBegin(GL_POLYGON);
 for (unsigned int v=0;v<scene.vertexCount(f);v++)
 {
 scene.vertexWC(f,v).glApply();
 }
 glEnd();
 // uncomment to render wireframe and thus see shadow edges
 // scene.visualiseFace(f,true,false,false,COLOUR_RED,false);
 }
 …

 glPopAttrib();
}

Interactive dynamic objects in a virtual light field

 90/95

Listing 6 Triangular subdivision code
From vlfDynamic.h
namespace dynamic
{

 /*
 Defines a triangle through three indexes into the triangleVertices index.
 Stored in anti-clockwise order
 */
 class indexedTriangle
 {
 public:
 int p,q,r;
 indexedTriangle(int pi, int qi, int ri) {
 p=pi; q=qi; r=ri;
 };
 int at(int pos) {
 switch(pos) {
 case 0:
 return p;
 break;
 case 1:
 return q;
 break;
 case 2:
 return r;
 break;
 }
 }

 };

 /*
 Holds information about faces decomposed into subtriangles for rendering
 */
 class triangleSubdivision
 {
 private:
 // Use this to track cuts when initially decomposing faces into subtriangles.
 // The key is the starting point index * 1000 + end point index;
 // This assumes less than 1000 triangle index points so be careful!
 std::map<int,int> triEdgeCutTracker;
 bool _initialised; // call subdivideAllFaces to initialise

 // Holds the indexed vertices of the triangles produced through subdivision
 // Added as they are created so we can assume we will never ask for an
 // out of range index during the creation process
 std::vector<glib::point3Df> triangleVertices;

 //// Holds the triangle list, per depth, per face in the dynamic scene (vlf::faces)
 //std::vector< std::vector< std::vector<indexedTriangle*>* >* >
vectorOfTrianglesPerDepthPerFace;

 public:
 // Holds the triangle list, per depth, per face in the dynamic scene (vlf::faces)
 // public so we can initialise in initBox() outside of this class. Not the cleanest
 // way but OK for now.
 std::vector< std::vector< std::vector<indexedTriangle*>* >* >
vectorOfTrianglesPerDepthPerFace;

 triangleSubdivision(){_initialised=false;};
 void addCut(int startPointIndex, int endPointIndex, int newPointIndex);
 /* Returns 0 or index */
 int getCut(int startPointIndex, int endPointIndex);
 /* Returns triangle vertex index */
 int addTriangleVertex(glib::point3Df &p);
 glib::point3Df& getTriangleVertex(int index) { return triangleVertices.at(index); };
 std::vector<indexedTriangle*>& getTriangleList(int faceIndex, int depth) {
 return *vectorOfTrianglesPerDepthPerFace[faceIndex]->at(depth);
 }
 int vertexCountAtDepth(int depth) {
 // assume same tri count per face
 return 3 * vectorOfTrianglesPerDepthPerFace[0]->at(depth)->size();
 }

Interactive dynamic objects in a virtual light field

 91/95

 int totalVertexCount() { return triangleVertices.size(); };

 void subdivideAllFaces();
 std::vector<indexedTriangle*>* subdivideIndexedTriangle(indexedTriangle& tri);
 // Write vertices out to console
 void listVertices() {
 for(int i=0;i<triangleVertices.size();i++) {
 std::cout << "V[" << i << "]: " << triangleVertices[i] << std::endl;
 }
 };
 // Check the lists of faces per depth are correct
 void listHeirarchies() {

 for(int iFace=0;
 iFace<vectorOfTrianglesPerDepthPerFace.size();
 ++iFace)
 {
 for(int iDepth=0;
 iDepth<vectorOfTrianglesPerDepthPerFace[iFace]->size();
 iDepth++)
 {

 std::vector<indexedTriangle*>*
triList=vectorOfTrianglesPerDepthPerFace[iFace]->at(iDepth);
 typedef std::vector<indexedTriangle*>::iterator TI;
 for(TI ti=triList->begin();
 ti!=triList->end();
 ++ti)
 {
 indexedTriangle* tri = *ti;
 std::cout << "Face[" << iFace <<"], "
 <<"Depth[" <<iDepth <<"], "
 << tri->p << ","
 << tri->q << ","
 << tri->r << "." << std::endl;
 }
 };

 };
 };
 };

 … // cut

 // holds triangle subdivision information
 dynamic::triangleSubdivision ts;
 int subdivisionLevel=0; // level of triangular subdivision to use on dyn faces
 … // cut

}

From vlfDynamic.cpp

void dynamic::initBox() // only the relevant code shown
{
 // initialise triangle subdivision scheme for VLF light rendering
 ts = dynamic::triangleSubdivision();

 … // cut

 // additionally define these faces in the triangle subdivision routines to
 // store the further subdivided faces for later OpenGL rendering.
 // This avoids the overhead of more MY_FACE_TYPE objects which aren't strictly needed
 // note these triangles index points in a seperate structure, but correspond to
 // same co-ordinates.
 indexedTriangle* t1 = new indexedTriangle(faces[i][0],faces[i][1],faces[i][2]);
 indexedTriangle* t2 = new indexedTriangle(faces[i][2],faces[i][3],faces[i][0]);

 std::vector< indexedTriangle* >* initialTriangleList1 = new std::vector<
indexedTriangle* >;
 std::vector< indexedTriangle* >* initialTriangleList2 = new std::vector<
indexedTriangle* >;
 initialTriangleList1->push_back(t1);
 initialTriangleList2->push_back(t2);

 // add depth zero list to face zero

Interactive dynamic objects in a virtual light field

 92/95

 std::vector< std::vector<indexedTriangle*>* >* listOfTriListsAtDepth0_t1 = new
std::vector< std::vector<indexedTriangle*>* >;
 std::vector< std::vector<indexedTriangle*>* >* listOfTriListsAtDepth0_t2 = new
std::vector< std::vector<indexedTriangle*>* >;

 listOfTriListsAtDepth0_t1->push_back(initialTriangleList1);
 listOfTriListsAtDepth0_t2->push_back(initialTriangleList2);

 // so ultimately we have 12 faces in the subdivision scheme.
 ts.vectorOfTrianglesPerDepthPerFace.push_back(listOfTriListsAtDepth0_t1);
 ts.vectorOfTrianglesPerDepthPerFace.push_back(listOfTriListsAtDepth0_t2);

 }
 ts.subdivideAllFaces();
 //ts.listVertices();
 //ts.listHeirarchies();

… // cut

}

void dynamic::triangleSubdivision::subdivideAllFaces() {
 if (_initialised) return; // only need to do this once.

 _initialised = true;

 int depth=0;
 int MAX_SUBDIVISION_DEPTH=2;
 while(depth < MAX_SUBDIVISION_DEPTH) {
 for(int faceIndex=0;faceIndex<dynamic::myIndexedFaceSet.faceCount();faceIndex++) {

 // Get triangle list at depth depth for face faceIndex
 // Assumes depth 0 for each face is already initialised

 std::vector<indexedTriangle*>* newList = new std::vector<indexedTriangle*>; //
initialises an empty list for next lower depth

 vectorOfTrianglesPerDepthPerFace[faceIndex]->push_back(newList); // add new depth
to back (index is effectively depth + 1)
 //foreach triangle in list

 std::vector<indexedTriangle*>* currentList =
vectorOfTrianglesPerDepthPerFace[faceIndex]->at(depth);

 typedef std::vector<indexedTriangle*>::iterator TI;
 for(TI i=(*currentList).begin();i!=(*currentList).end();++i) {
 indexedTriangle* tri = *i;

 std::cout << "tri.r: " << tri->r << std::endl;
 std::vector<indexedTriangle*>* tmplist = subdivideIndexedTriangle(*tri);
 //foreach(tri in tmplist) {
 for(TI j=(*tmplist).begin();j!=(*tmplist).end();++j) {
 newList->push_back(*j);
 }
 }
 }
 depth++;
 }
}

void dynamic::triangleSubdivision::addCut(int startPointIndex, int endPointIndex, int
newPointIndex)
{
 // sanity
 if(startPointIndex==endPointIndex) return;

 // Always use lower index first as we could be traversing vertices in either order and
there is only one cut between vertices
 if(startPointIndex>endPointIndex) {
 int tmp=startPointIndex;
 startPointIndex=endPointIndex;
 endPointIndex=tmp;
 }
 // This will overwrite any existing value without checking.
 triEdgeCutTracker[(startPointIndex * 1000) + endPointIndex] = newPointIndex;

Interactive dynamic objects in a virtual light field

 93/95

}

/* return -1 if none otherwise index of existing cut vertex */
int dynamic::triangleSubdivision::getCut(int startPointIndex, int endPointIndex)
{
 // A map assigns the default value of the mapped type if the key
 // doesn't already exist. In this case the default of an int is 0 so
 // treat a return value of 0 as the index not yet existing.
 // 0 will never be a valid cut index as is has to be some form
 // of sum between two triangle indices

 // Always use lower index first as we could be traversing vertices in either order and
there is only one cut between vertices
 if(startPointIndex>endPointIndex) {
 int tmp=startPointIndex;
 startPointIndex=endPointIndex;
 endPointIndex=tmp;
 }
 return triEdgeCutTracker[(startPointIndex * 1000) + endPointIndex];
}

int dynamic::triangleSubdivision::addTriangleVertex(glib::point3Df &point) {
 *back_inserter(triangleVertices)=point;
 std::cout << "Size:" << triangleVertices.size()-1;
 return triangleVertices.size()-1;
}

std::vector<dynamic::indexedTriangle*>*
dynamic::triangleSubdivision::subdivideIndexedTriangle(dynamic::indexedTriangle& tri) {

 // new empty triangle list to fill and return
 std::vector<dynamic::indexedTriangle*>* triList =
 new std::vector<dynamic::indexedTriangle*>;

 glib::point3Df p=triangleVertices[tri.p];
 glib::point3Df q=triangleVertices[tri.q];
 glib::point3Df r=triangleVertices[tri.r];

 int pqi; // halfway vertex indices
 int qri;
 int rpi;

 pqi=getCut(tri.p,tri.q);
 if(!pqi) { // there is no existing vertex cutting these two points
 glib::point3Df pq = (p+q); // new halfway point
 pq.X(pq.X()/2.0f);
 pq.Y(pq.Y()/2.0f);
 pq.Z(pq.Z()/2.0f);

 pqi = addTriangleVertex(pq);
 addCut(tri.p,tri.q,pqi);
 }
 // repeat for qr and rp

 qri=getCut(tri.q,tri.r);
 if(!qri) { // there is no existing vertex cutting these two points
 glib::point3Df qr = (q+r); // new halfway point
 qr.X(qr.X()/2.0f);
 qr.Y(qr.Y()/2.0f);
 qr.Z(qr.Z()/2.0f);

 qri = addTriangleVertex(qr);
 addCut(tri.q,tri.r,qri);
 }

 rpi=getCut(tri.r,tri.p);
 if(!rpi) { // there is no existing vertex cutting these two points
 glib::point3Df rp = (r+p); // new halfway point
 rp.X(rp.X()/2.0f);
 rp.Y(rp.Y()/2.0f);
 rp.Z(rp.Z()/2.0f);

 rpi = addTriangleVertex(rp);
 addCut(tri.r,tri.p,rpi);
 }

 triList->push_back(new indexedTriangle(tri.p,pqi,rpi));

Interactive dynamic objects in a virtual light field

 94/95

 triList->push_back(new indexedTriangle(pqi,tri.q,qri));
 triList->push_back(new indexedTriangle(qri,tri.r,rpi));
 triList->push_back(new indexedTriangle(rpi, pqi, qri));
 return triList;
};

Interactive dynamic objects in a virtual light field

 95/95

7 Accompanying CD-ROM disc

7.1 /source

This directory contains the full source code for the dynamic object VLF code. It

is in the form of a Microsoft visual studio solution.

\source\MS_VC_NET2003\vlfApps.sln is the main solution file. To compile and run

the code the following extra open source code may be required:

The image debugger (http://www.billbaxter.com/projects/imdebug/) - used to

produce some screenshots.

The OpenGL Extension Wrangler Library (http://glew.sourceforge.net/) – used

to check necessary OpenGL extensions are available.

7.2 /video

Contains video files in Microsoft WMV9 format. These files demonstrate the

application running in real time.

7.3 /misc

Contains AC3D scene files and the exported *.obj versions required to render

the test scenes used. Also contains the VLF *.bin files for these scenes and the raw

spreadsheets used to create the results section.

