
Texture Sprites: Texture Elements Splatted on Surfaces
Sylvain Lefebvre∗ Samuel Hornus∗ Fabrice Neyret∗

GRAVIR / IMAG-INRIA

(a) (b) (c) (d) (e) (f)

Figure 1: From left to right: (a) Lapped textures. (b-c) Animated sprites. (d) Blobby painting. (e) Voronoi blending of sprites. (f) Octree texture.
The bottom line shows the texture patterns used (which are the only user defined textures stored in video memory). All these bunnies are rendered in one
pass, in real-time, using our composite texture representation. The texture sprites can be edited interactively. The original mesh is unmodified.

Abstract

We present a new interactive method to texture complex geome-
tries at very high resolution, while using little memory and without
the need for a global planar parameterization. We rely on small
texture elements, the texture sprites, locally splatted onto the sur-
face to define a composite texture. The sprites can be arbitrarily
blended to create complex surface appearances. Their attributes
(position, size, texture id) can be dynamically updated, thus pro-
viding a convenient framework for interactive editing and animated
textures. We demonstrate the flexibility of our method by creating
new surface aspects difficult to achieve with other methods.

Each sprite is described by a small set of attributes which is
stored in a hierarchical structure surrounding the object’s surface.
The patterns supported by the sprites are stored only once. The
whole data structure is compactly encoded into GPU memory. At
run time, it is accessed by a fragment program which computes the
final appearance of a surface point from all the sprites covering it.
The overall memory cost of the structure is very low compared to
the resulting texturing resolutions. Rendering is done in real–time.
The resulting texture is linearly interpolated and filtered.

CR Categories: I.3.7 [Computer Graphics]: Three -Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: texturing, texture sprites, octree textures, decals, real–
time rendering, graphics hardware

∗email: FirstName.Name@imag.fr
URL: http://www-evasion.imag.fr/Publications/2005/LHN05

1 Introduction

Textures are crucial for the realism of scenes. They let us add de-
tails without increasing the geometric complexity in real-time ap-
plications. Games and special effects now rely on multiple texture
layers on objects. However, texturing 3D models with very high
resolutions creates two major difficulties. First, the storage cost of
high resolution texture maps can easily exceed the available texture
memory. The difficulty to create planar parameterizations further
worsens this problem since memory can be wasted by unused space
in the texture maps or by distorted areas. Second, creating high res-
olution textures proves to be a difficult and tedious task.

A current trend in computer graphics is to synthesize large tex-
tures from image samples [De Bonet 1997; Wei and Levoy 2000].
Indeed, many surfaces have an homogeneous appearance which can
be well captured by a small sample. Many of these algorithms pro-
duce a larger texture by combining patches taken from the texture
sample [Efros and Freeman 2001; Kwatra et al. 2003]. However,
because of the lack of efficient representation of patch–based tex-
tures, they often explicitly store the resulting texture in a large im-
age, which wastes memory. Another approach is to introduce new
geometry to position the patches directly onto the surface [Praun
et al. 2000; Dischler et al. 2002]. If this approach greatly reduces
texture memory consumption, it also increases the geometrical cost,
for texturing purposes only. Moreover, this hinders geometric opti-
mizations such as triangle strips and geometric level of details.

Besides homogeneous appearances, textures are also a solution
to encode scattered objects like footprints, bullet impacts [Miller
2000], or drops [Neyret et al. 2002; Lefebvre 2003]. These are
likely to appear dynamically during a video game. In this situa-
tion also, the lack of representation for textures composed of sparse
elements creates difficulties. Storing scattered details in a large tex-
ture covering the mesh wastes a lot of memory, since the texture
then contains large empty areas. The common solution is to use de-
cals instead, i.e., to put the texture elements on extra small textured
transparent quads. However, such marks do not stick correctly to
curved surfaces and intersection between decals yields various ar-
tifacts such as discontinuities and flickering due to Z–fighting. All
this gets worse if the underlying surface is animated since all the
decals must be updated at each time step.

We describe a new representation for textures composed of vari-
ous texture elements. Since the texture elements live on the object

Figure 2: The attributes of the sprites are stored in an octree structure
surrounding the mesh surface.

surface and can be updated dynamically we refer to them as tex-
ture sprites. Our representation provides a general and convenient
scheme for sprite-based texturing, ranging from homogeneous ap-
pearances obtained by overlapping many sprites, to the interactive
addition of local details. It does not require the mesh to conform
to any constraint. In particular it does not require to compute a
global planar parameterization, nor to modify the initial mesh: The
geometry and the composite texture are independent.

The contributions of this paper are:
- A parameterization-free texture representation allowing efficient

storage and filtered rendering of composite textures.
- An efficient solution to dynamic decal management and ani-

mated texture elements.
- New appealing texturing effects made possible by our texture

representation, as illustrated in Figures 1 and 9.
- A complete GPU-implementation that makes our method usable

both in texture authoring tools and real-time applications.
Our key idea is to store the mapping parameters of the sprites along
the mesh surface, using a hierarchical structure similar to an oc-
tree (see Figure 2). At run–time, the renderer determines which
sprites are covering the rasterized pixel, and computes the final
color by combining the sprite’s textures. Customizable blending
operators allow to treat overlapping sprites according to the user
requirements. The resulting composite texture is accessed from a
fragment program using 3D texture coordinates.

2 Previous work and texturing issues

2.1 High resolution textures

When creating detailed textures, one has to cope with two issues:
authoring the texture content and making it small enough to fit into
texture memory.

A solution to save memory while keeping high resolution is to
rely on repeated patterns using tiles (see Figure 3). Games usually
use quad tiles for terrain textures. Recently, Cohen et al. [2003]
proposed an approach to avoid regularity with a small set of pre-
computed tiles. This approach was ported to the GPU by Wei
[2004]. Lefebvre and Neyret [2003] also proposed a similar method
to dynamically instantiate texture patterns at arbitrary locations in a
2D texture space. Arbitrarily large textures are thus created at low
memory cost. These approaches do not require modifications of the
mesh geometry. However, this process does not transfer well to ar-
bitrary surfaces where the parameterization introduces distortions
on the tiles. Therefore, these methods cannot represent composite
textures on arbitrary surfaces and suffers from the same artifacts as
traditional mapping on curved geometry.

#2

#1

#2

#1

#2

#1#2

#1

#2

#1

#2

#1

Figure 3: A tiling saves memory by instancing a small set of patterns.

Another convenient approach to produce highly detailed textures
is to automatically synthesize large textures from an image sample
[De Bonet 1997; Wei and Levoy 2000; Efros and Freeman 2001;
Kwatra et al. 2003]. The result is stored in a 2D texture map: A
parameterization of the object is mandatory. The distortions and
discontinuities often introduced by the parameterization may lead
to visual artifacts. In particular, it may require to increase the tex-
ture size to avoid loss of resolution in distorted areas. Since the
synthesized texture is also composed of similar patterns the rep-
resentation is not memory efficient. Other algorithms proceed di-
rectly on the surface to avoid parameterization [Praun et al. 2000;
Turk 2001; Wei and Levoy 2001; Soler et al. 2002; Dischler et al.
2002]. To store the result they often modify the input geometry,
which breaks the independence between the texture and the mesh.
This can produce an overly sampled geometry and hinders the use
of geometric level of details or the dynamic update of the texture
content. Authors proposing better solutions for the storage either
generate a soup of small textured polygons [Dischler et al. 2002] or
redraw several times the faces on which several texture elements are
mapped [Praun et al. 2000]. As explained in this last paper, instanc-
ing instead of duplicating texture elements allows one to obtain a far
better texture resolution with less memory. However, drawing sev-
eral superimposed faces increases the geometry processing cost and
yields various blending issues and Z–buffer conflicts. Moreover,
the dynamic creation and update of these small geometry patches is
difficult when geometry is complex or animated.

2.2 Filtering issues

It is important to realize that GPU rendered scenes are anti-aliased
mostly thanks to texture filtering mechanisms and despite aliasing
in the rasterized geometry. However, this works only under the
assumption that the texture mapping function is continuous along
the surface. Each time a mapping discontinuity is defined on the
surface the filtering is no longer correct, for both linear interpolation
and MIP-mapping. Note that oversampling decreases but does not
remove these artifacts.

The new powerful features of GPUs also yield new filtering is-
sues since numerous non-linear or discontinuous effects can now
occur within a face: Indirections can be used to cover two nearby
areas with different texture regions; pixel shaders can modify or
procedurally determine the pixel color. In both cases, estimating
correctly filtered value is no longer possible using an embedded
mechanism. It is the programmer’s responsibility to handle filter-
ing. Even so, detecting and fixing the problem is not straightfor-
ward [Kraus and Ertl 2002; Lefebvre and Neyret 2003; Wei 2004].

3 Sprite-Based Textures

This section describes our texturing method dedicated to the edit-
ing and rendering of sprite-based textures. Sprites are local texture
elements that are dynamically projected onto the surface.

Our key idea is to store the sprite attributes (position, orienta-
tion, etc) in a 3D hierarchical structure surrounding the mesh. Until

recently, volumetric representations have been used only for solid
texturing [Perlin 1985; Peachey 1985; Worley 1996] and volume
rendering. We follow the idea of octree textures [DeBry et al. 2002;
Benson and Davis 2002] which relies on an octree to efficiently
store color information along a surface. However, instead of stor-
ing colors we store the sprites attributes in the leaves of the hier-
archical grid (see Figure 2). The entire data-structure is compact:
Many sprites share a same texture pattern and information is stored
only around the surface.

The structure is encoded into GPU texture memory and is ac-
cessed from a fragment program using 3D texture coordinates.
Thus, the original mesh geometry is not modified and can be op-
timized for rendering (triangle strips, level of details) indepen-
dently from the texture. The composite texture (composed of all
the sprites) is linearly interpolated and MIP-mapped.

Sprite-based textures are easy to author: The user clicks on the
surface to add sprites, drags and drops them and he interactively
changes their size or orientation. The system is very flexible: Sprite
ordering is controllable and overlapping sprites can be mixed to-
gether to achieve various appealing effects (Figure 1). Each sprite
can be independently animated, for instance to react to surface de-
formations as shown in Figure 9.

Our representation is interesting for high quality software ren-
derers, to reduce memory requirements of composite textures and
to avoid rendering artifacts. Since it is amenable to GPU imple-
mentation despite the more constrained context, we focus on the
description of a GPU implementation. It is easy to adapt it to a
software framework.

Several difficulties have to be solved: Section 4 describes how
to manage the hierarchical 3D grid on the GPU so that it can be ac-
cessed from a fragment program. Section 5 shows how we use the
hierarchical grid to store and retrieve sprites attributes. Section 6
explains how we filter the composite texture and blend overlapping
sprites together. Section 7 presents various appealing texturing ef-
fects made possible by our composite textures, as well as perfor-
mance results. We conclude and discuss future work in Section 8.

4 Implementing a 3D hierarchical grid on
a GPU

We now explain how to store the hierarchical grid in texture mem-
ory, and how to retrieve data from the grid at a given 3D location.
This is implemented in a fragment program (or pixel shader) exe-
cuted per-pixel on the GPU.

Hierarchical grids such as octrees are often used to compactly
store sparse data (e.g. images or volumes). They are easy to imple-
ment using arrays. The texture indirection ability of modern GPUs
is quite similar to the notion of an array, and the programmability of
these GPUs enables the programming of the structure access. How-
ever, it is crucial to think about the consequences of each choice
in terms of performance, and precision issues complicate the task
(these include low dynamics of values and the fact that indices are
floating points). The reader can also refer to [Lefebvre et al. 2005]
for details on how to implement and use octree textures on the GPU.

[Kraus and Ertl 2002] introduced the first attempt (using a first
generation programmable GPU) to skip the empty space in a target
texture by packing blocks of data so as to only store relevant texture
data in texture memory. They used an indirection method based on
a regular grid: To encode a virtual texture T containing sparse data
the space is first subdivided into n tiles. Then the non-empty tiles
are packed in a texture P containing s tiles and an indirection map
I of resolution n is used to recover the pixel color of any given lo-
cation: T (x) = P

(

I(x)+ f rac(x·n)
s

)

(where f rac(x) denotes the frac-
tional part of x).

We extend these two ideas to create a hierarchical 3D grid stor-
ing sprite positioning information. We call this structure a N3-tree
because each internal node has N3 children (N in each dimension).
An octree corresponds to N = 2 (in our implementation we use
N = 4). See Section 4.3 for a discussion on the choice of N.

4.1 N3-tree memory layout

Tree structure
Figure 4 shows the grid structure: Each node represents an indi-
rection grid consisting of N3 cells; the cell content (whose type is
determined by a flag stored in the A-channel) is either data if it is
a leaf (A = 1), or a pointer to another node (A = 1

2). The third
possibility (A = 0) indicates that the cell is empty.

To optimize for the limited range of texture indices, we store our
structure in a 3D texture called the indirection pool in which both
data values and pointer values are stored as RGB-triples.

Note that this vectorial organization does not add any cost since
the GPU hardware does vectorial operations on 4D vectors. In the
following we use vector notations (operations are done component
by component).

Notations
Let N ×N ×N be the resolution of the indirection grid correspond-
ing to each tree node. The resolution of the virtual 3D grid at
level l is Nl ×Nl ×Nl . At level l a point M in space (M ∈ [0,1)3)

lies in a cell located at Ml,i =
bM·N lc

N l and has a local coordinate

Ml, f =
f rac(M·N l)

N l within this cell. We have M = Ml,i +Ml, f .
Nodes are packed in the indirection pool (see Figure 4-right).

Let Su, Sv and Sw be the number of allocated nodes in the u,v and w
directions. We define S = (Su,Sv,Sw) as the size of the indirection
pool using the vectorial notation. The resolution of the texture host-
ing the indirection pool is therefore N Su ×N Sv ×N Sw. A texture
value in the indirection pool is indexed by a real valued P ∈ [0,1)3,
as follows:

P can be decomposed into Pi + Pf with Pi =
bP·Sc

S and

Pf =
f rac(P·S)

S . Pi identifies the node which is stored in the area
[Pi,Pi +

1
S) of the indirection pool. Pi is called the node coordi-

nates. Pf is the local coordinate of P within the node’s indirection
grid.

Note that packing the cells does not change the local coordinates:
At level l, if the value corresponding to the point M is stored at the
coordinate Pl in the indirection pool then Ml, f Nl = Pl, f S. Thus:

Pl, f =
f rac(M ·Nl)

S
(1)

A A

D

B C

A

D

B

E

C

ECA

B D

(0,0,0)

Indirection Pool

� ��������� � �������	� � ��������

�� ��� ������

Figure 4: An example tree. The five nodes A,B,C,D and E are packed in
the indirection pool (right). In this example each node is an indirection grid
of size 23 (N = 2). The cells of the indirection grids contain either data
(light, green cells) or an indirection (i.e. a pointer) to a child node (dark,
blue cells).

4.2 Retrieving values for a given location: tree
lookup

The virtual 3D texture in which the data is stored is aligned with the
bounding box of the object to be textured. For rendering, we need
to retrieve the data corresponding to a given location M in space
(more precisely, on the object surface). This is done per-pixel in a
fragment program.

We start from level 0 in the tree. The indirection grid associated
with the tree root is always stored at coordinates (0,0,0) in the in-
direction pool. At level l let Pl,i be the coordinate of the current
node in the indirection pool. The RGBA value corresponding to M
is found in the current node indirection grid at the local coordinate
Pl, f , obtained by Equation (1). This corresponds to the coordinate
Pl = Pl,i +Pl, f in the indirection pool.

The value in A tells us whether we are in a leaf, an empty node
or an internal node. If we are in a leaf the data RGB is returned. If
we are in an empty node the fragment is discarded (i.e. the shader
aborts). Otherwise RGB contains a pointer to a child node and we
decode the next node coordinate Pl,i from the RGB value. Then
we continue to the next level (l +1). Our algorithm is described in
Figure 5.

float4 rgba = <0,0,0,0>;
for (float i=0; i<TREE_MAX_DEPTH; i++) {

// child location
float3 P = (frac(M)+rgba.xyz*255.0)*inv_S;
rgba = (float4)tex3D(PoolTex,P); // access indir. pool
if (rgba.w > 0.9) break; // type of node = leaf
if (rgba.w < 0.1) discard; // type of node = empty
M=M*N; // go to next level

}
return rgba;

Figure 5: The pseudo–code of our tree lookup. M is provided by the CPU
via the 3D texture coordinates. inv_S= 1

S . As the break statement is not
available on all hardware our real pixel shader is a bit more complicated.

4.3 Implementation details

Addressing precision and storage issues
To avoid precision issues and minimize storage requirements we
store S · Pl,i instead of Pl,i in the indirection cells. Recall that
Pl,i ∈ [0,1) is the coordinate of a node’s indirection grid within the
indirection pool. Therefore, S ·Pl,i is an integer, and we can store
it as such, which has two advantages. First, it optimizes the en-
coding: We can choose the number of bits to be stored in the RGB
channels to exactly represent at most S indices. Second, the values
of the pointers do not depend on the size of the indirection pool.
The size of the indirection pool can therefore be changed without
recomputing the pointers.

Precision limitations
Due to the limited precision of 32 bit floating point internal regis-
ters there is a limit on the depth, resolution and number of nodes
of our hierarchical grid. To avoid precision issues we use power
of two values for N and S. Recall that S controls the size of the
indirection pool and thus the maximum number of nodes that can
compose the N3-tree. Writing N = 2eN , S = (2eS ,2eS ,2eS) and using
standard floating point values with a mantissa of 23 bits, the deepest
reachable depth is dmax = b 23−eS

eN
c (see Figure 6).

Increasing the size N of the tree nodes allows to store more infor-
mation at a given tree depth. Usually for a same set of sprites this
reduces the tree depth resulting in better performance (fewer texture
lookups are required to go down the tree). An application limited
by storage would rather choose a small N value to pack texture data

N S (maximum dmax max. reachable
number of nodes) resolution

2 16×16×16 19 (219)3

4 16×16×16 9 (218)3

8 16×16×16 6 (218)3

2 32×32×32 18 (218)3

4 32×32×32 9 (218)3

2 128×128×128 16 655363

4 128×128×128 8 655363

Figure 6: Typical values of N, S and corresponding limits. The maximum
resolution of the resulting 3D texture is Ndmax ×Ndmax ×Ndmax . The maximal
number of nodes the indirection pool can store is 23eS .

as tightly as possible. However, for applications where rendering
performance is crucial a larger value of N would be preferable to
limit per-fragment computations while still offering high resolution
in deepest tree levels.

Increasing the maximum number of nodes S that can be stored in
the indirection pool allows to create larger structures. An increase
of S reduces dmax, but only by a small amount.

5 Managing the texture sprites

Each sprite is associated with various parameters (including posi-
tioning parameters described in Section 5.3) and a bounding volume
V defining the spatial limit of the sprite influence on the composite
texture. This bounding volume is used to determine which cells are
covered by the sprite and detect whether two sprites overlap.

5.1 Sprite storage

Storing sprite parameters
The parameters associated with a sprite must be stored in the tree
leaves. These parameters are a set of p floating point numbers.
Since a given sprite is likely to cover several leaves, it is not a good
idea to store this set directly in each leaf: This would waste mem-
ory and complicate the update of sprites. Instead we introduce an
indirection: The sprite parameter table is a texture containing all
the parameters for all the sprites. Each sprite corresponds to an in-
dex into this texture; each texel encodes a parameter set. We store
the index of the sprite parameters in the tree leaf data field: The
RGB value encodes a pointer to the sprite parameter table just as it
encodes pointers to child nodes.

The sprite parameter table has to be allocated in texture memory
with a chosen size based on the expected number of sprites M. If
more are added, the table must be reallocated and old values must
be copied.

Dealing with overlapping sprites
Not only can each sprite cover several cells but several sprites are
also likely to share the same cell. Therefore we must be able to
store a vector of sprite parameters in each leaf.

We address this by introducing a new indirection map: The leaf
vectors table (see Figure 7). This 3D texture implements a table
of vectors storing the sprite parameters associated with a leaf. Two
dimensions are used to access the vector corresponding to a given
leaf. The third dimension is used to index the vector of sprite pa-
rameters. Each voxel of this 3D texture therefore encodes a pointer
to the sprite parameter table. We use a special value to mark unused
entries in the vectors. The maximum size Omax of a vector controls
the maximum number of sprites allowed per leaf.

The tree also has to be modified: Instead of directly storing the
index of one sprite in the leaves, we now store an index to the leaf
vector.

�������

�������	���! �"�#�$�%&"���')(�

*&#,+-�/. 0)+). $��� �"�. #�0�1�$�. +

243 $�. "�� 3 ��$���56��"���$�%7"���')(�

Figure 7: Each indirection cell stores the index of the corresponding leaf
vector. Each cell of the leaf vector stores the indices of the sprite parameters.

5.2 Adding a sprite to the tree

The influence of a sprite is limited to its bounding volume. The
sprite must therefore be present in all the leaves colliding with this
volume. Our insertion algorithm (run by the CPU) is as follows:
addSprite(node n, sprite s) :
if (n is a leaf)

if (number of sprites in n < Omax) insert s in n
else
if (s overlaps with all the sprites in n)
error(Omax too small !)

else {
if (max depth reached)
error(Max depth reached !)

split n
addSprite(n,s)

}
else

forall child c of n colliding with s
addSprite(c,s)

The leaves are not split until the limit of Omax sprites is reached.
Leaf splitting occurs only in full leaves. In our implementation we
used Omax = 8. Generally when a leaf is filled with Omax sprites,
the maximum number of sprites really overlapping at a given point
is Cmax < Omax. When inserting a new sprite it is then possible to
recursively subdivide the node so than Cmax is kept smaller than
Omax in the new leaves (see Figure 8). This may locally generate a
set of small nodes if the sprite regions are hard to ‘separate’. How-
ever, this scheme tends to produce a tree of small depth since most
leaves will contain several packed sprites.

8

9;:=<?>6@�A B C

B D

<?>6@�AFEHG

Figure 8: A new sprite (dark, blue) is inserted in a full leaf. As the sprite
does not overlap with all the sprites (light, green), there is a level of subdi-
vision at which the new sprite can be inserted. Subdividing lets us keep the
sprite count less than or equal to Omax.

Insertion failures
Omax should be chosen greater than the maximum number of sprites
allowed to contribute to a given pixel. A painting application might
choose to discard some sprite in overcrowded cells to keep this
number reasonable.

The maximum depth level is reached only when more than Omax
sprites are crowded in the same very small region (i.e., they cannot
be separated by recursive splitting).

Ordering of sprites
The ordering of overlapping sprites might be meaningful in some
cases (e.g. snake scales). We ensure that the shader will visit them
in the right order, simply by ordering the sprites in the leaf vectors
table.

5.3 Positioning the sprites on the surface

At this stage we can know which sprites are in each cell surrounding
the object surface, but no more. In this section we describe how
to encode and recover their precise position and orientation. The
pattern associated with the sprite must be mapped to the surface,
i.e., we need to define a projection from texture space to surface
space. In practice the opposite is done: The rasterization produces
a 3D point and we must project it back to texture space, onto the
sprite.

We associate a frame to each sprite and use a parallel projection
to the surface. The positioning parameters are:
- a center point c (sprite handle),
- two vectors l,h defining the plane, scale and orientation of the

pattern,
- a normal vector n defining the direction of projection.

Let M denote the matrix (l,h,n). Once the sprite parameters
are fetched for a given point P, we compute in the pixel shader
U = M−1 · (P− c) with U = (u,v,w) to get the texture coordinates
within the pattern. w is useful for volumetric or solid textures, but
also in the 2D case: when two faces of the mesh are very close
to each other (e.g., a folded surface) we need to distinguish which
texture applies to which fold. Instead of forcing the tree cell to sub-
divide we can simply define a narrow region where the projection
applies by tuning the scale of n. This solves the ambiguous color
assignment with thin or flat two-sided objects described in [DeBry
et al. 2002; Benson and Davis 2002].

The sprite projection on the surface is equivalent to defining a lo-
cal linear parameterization. If the distortion is too high for a given
sprite, when a geometric feature is smaller than the sprite, it is pos-
sible to split it in multiple sub–sprites to minimize distortion. Each
sub–sprite displays only a sub–region of the initial sprite texture.
Our representation supports such decompositions, but the calling
application is in charge of computing the sub–sprite positioning. In
practice, to avoid visible projection artifacts we attenuate the sprite
contribution according to the angle between the sprite and surface
normals.

Deformation-proof texturing
Our tree structure allows to store and retrieve data from 3D loca-
tions. However, it is meant to associate these informations to an
object surface. If the object is rotated, rescaled or animated we
want the texture data to stick to the surface. This is exactly equiva-
lent to the case of solid textures [Perlin 1985]. The usual solution is
to rely on a 3D parameterization (u,v,w) stored at each vertex and
interpolated as usual for any fragment. This parameterization can
be seen as the reference or rest state of the object and can conve-
niently be chosen in [0,1]3.

Note that the reference mesh does not need to be the same as
the rendered mesh as long as they can be textured by the same N3-
tree. For instance, a subdivision surface can be subdivided further
without requiring one to update the texture. The (u,v,w) of newly
created vertices just have to be interpolated linearly.

Since our representation defines a 3D texture, the rendered mesh
does not even need to be a surface. In particular, point-based rep-
resentations and particle systems can be textured conveniently. Fi-
nally, a high resolution volume could even be defined by 3D sprites
and sliced as usual for volume rendering.

5.4 Blending sprites

When multiple sprites overlap, the resulting color is computed by
blending together their contributions. Various ways of compositing
sprites can be defined. The texturing methods that rely on multipass
rendering are limited to basic frame buffer blending operations. In
most cases, it is transparency blending. Since our blending is per-
formed in a fragment program, we do not suffer from such limita-
tions. Our model relies on a customizable blending component to
blend the contributions of the overlapping sprites.

We implemented non standard blending modes such as blobby-
painting (Figure 1(e)) or cellular textures [Worley 1996] (i.e.,
Voronoi, Figure 1(f)). The first effect corresponds to an implicit
surface defined by sprite centers. The second effect selects the color
defined by the closest sprite. Both rely on a distance function that
can be implemented simply by using a pattern containing a radial
gradient in the alpha value A (i.e., a tabulated distance function).

6 Filtering
We can distinguish three filtering cases: Linear interpolation for
close viewpoints (mag filter), MIP-mapping of sprites (min filter)
and MIP-mapping of the N3-tree.

Linear interpolation
Linear interpolation of the texture of each sprite is handled naturally
by the standard texture units of the GPU. As long as the blending
equation between the sprites is linear the final color is correctly
interpolated.

MIP-mapping of sprites
The min filtering is used for faces that are either distant or tilted ac-
cording to the viewpoint. The MIP-mapping of the texture of each
sprite can be handled naturally by the texture unit of the GPU. As
long as the blending equation between the sprites is linear, filtering
of the composite texture remains correct: Each sprite is filtered in-
dependently and the result of the linear blending still corresponds
to the correct average color. However, since we explicitly com-
pute the (u,v) texture coordinates within the fragment program, the
GPU does not know the derivatives relative to screen space and thus
cannot evaluate the MIP-map level. To achieve correct filtering we
compute the derivatives explicitly before accessing the texture. (We
rely on the ddx and ddy derivative instructions of the HLSL or Cg
languages).

MIP-mapping of the N3-tree
If the textured object is seen from a very distant viewpoint, multiple
cells of the tree may be projected into the same pixel. Aliasing will
occur if the cells contain different color statistics. Tree filtering can
be achieved similarly to what was done in the case of [DeBry et al.
2002; Benson and Davis 2002] (i.e., defining nodes values that are
the average of child values, which corresponds to a standard MIP-
mapping). In our case we first need to evaluate the average color
of the leaves from the portion of the sprites they contain. However,
cell aliasing does not occur often in practice: First, the cell size
does not depend on the sprite size. In particular, small sprites are
stored in large cells. Second, our insertion algorithm presented in
Section 5.2 tends to minimize the tree depth to avoid small cells.
Finally, small neighboring cells are usually covered by the same
sprites and therefore have the same average color. Thus we did
not need to implement MIP-mapping of the N3-tree for our demos.
Apart from very distant viewpoints (for which the linearity hypoth-
esis assumed by every texturing approach fails), the only practical
case where cell aliasing occurs is when two different sprites are
close to each other and cannot be inserted inside the same leaf. The
two sprites have to be separated by splitting the tree. As a result,
small cells containing different sprites are generated. These cells
are likely to alias if seen from a large distance.

7 Applications and Results

7.1 Examples

We have created various examples to illustrate our system, shown
on Figure 1, Figure 9 and in our video (available at http://
www-evasion.imag.fr/Publications/2005/LHN05).

Texture authoring (Figure 1(c) and video)
In this example, the user interactively pastes texture elements onto
a surface. After having provided a set of texture patterns, the user
can simply click on the mesh to create a texture sprite. The latter
can then be interactively scaled, rotated, or moved above or below
the already existing sprites. The night-sky bunny was textured in a
few minutes.

This typically illustrates how an application can use our repre-
sentation: Here, the application is responsible for implementing the
user interface, placing the sprites (a simple picking task), and ori-
enting them. Requests are sent to our texture sprites API to delete
and insert sprites as they move.

Note that sprites can overlap, but also large surface parts can
remain uncovered. This permits the use of an ordinary texture (or
a second layer of composite texture) on the exposed surface. In
particular, this provides a way to overcome the overlapping limit by
using multipass rendering.

Lapped texture approximation (Figure 1(a) and video)
This example was created using the output of the Lapped Textures
algorithm [Praun et al. 2000] as an input to our texturing system.
Our sprite-based representation fits well with the approach of this
texture synthesis algorithm in which small texture elements are
pasted on the mesh surface. Our representation stores such textures
efficiently: The sample is stored only once at full resolution and
the N3-tree minimizes the memory space required for positioning
information. Moreover, rendering does not suffer from filtering is-
sues created by atlases or geometrical approaches (see video), and
we use the initial low resolution mesh. Since lapped texture in-
volves many overlapping of sprites, in our current implementation
we use two separate composite textures to overcome hardware limi-
tations (the maximum number of registers and instructions limit the
maximum number of overlapping sprites).

Animated sprites (Figure 1(b,c) and video)
Sprites pasted on a 3D model can be animated in two ways. First,
the application can modify the positioning parameters (position,
orientation, scaling) at every frame, which is not time consum-
ing. Particle animation can be simulated as well to move the sprites
(e.g., drops). In Figure 1(b), the user has interactively placed gears.
Then the sprites rotation angle is modified at each frame (clockwise
for sprites with even id and counter-clockwise for odd ones). Sec-
ond, the pattern bound to a sprite can cycle over a set of texture
patterns, simulating an animation in a cartoon-like fashion. The
patterns of Figure 1(c) are animated this way. See Table 1 for frame
rate measurements.

Snake scales (Figure 9 and video)
As explained above each sprite can be independently scaled and
rotated. This can even be done by the GPU as long as a for-
mula is available, and as long as the sprite bounding volume re-
mains unchanged. For illustration we emulated the behavior of rigid
scales: usually the texture deforms when the underlying surface
is deformed (Figure 9, middle). We estimate the local geometric
distortion and scale the sprites accordingly to compensate for the
deformation of the animated mesh. Our example is an undulating
snake covered by scales: one can see (especially on the video) that
the scales keep their size and slide on each other in concave areas.
Note that this has similarities with the cellular textures of Fleischer

Figure 9: Undulating snake mapped with 600 overlapping texture sprites whose common pattern (color+bump) have a 512× 512 resolution. The virtual
composite texture thus has a 30720×5120 resolution. One can see the correct filtering at sprite edges. This figure demonstrates the independent tuning of each
scale aspect-ratio in order to simulate rigid scales. Middle: Without stretch compensation. The texture is stretched depending on the curvature. Right: With
stretch compensation. The scales slide onto each other and overlap differently depending on the curvature (see also the video).

et al. [Fleischer et al. 1995]: Sprites have their own life and can
interact. But in our case no extra geometry is added: Everything
occurs in texture space. We really define a textural space in which
the color can be determined at any surface location, so we do not
have to modify the mesh to be textured.

Octree textures (Figure 1(f) and video)
We have reimplemented the DeBry et al. octree textures [DeBry
et al. 2002] with our system in order to benchmark the efficiency
of our GPU N3-tree model. In this application no sprite parameter
is needed, therefore we directly store color data in the leaf cells of
the indirection grids. The octree texture can be created by a paint
application or by a procedural tool. Here we created the nodes at
high resolution by recursively subdividing the N3-tree nodes inter-
secting the object surface. Then we evaluated a Perlin marble noise
to set the color of each leaf. For filtering, we implemented a simple
tri–linear interpolation scheme by querying the N3-tree at 8 loca-
tions around the current fragment. The bunny model of Figure 1(f)
is textured with an octree texture of depth 9 (maximal resolution of
5123). We obtain about 33 fps at 1600× 1200 screen resolution,
displaying the bunny model with the same viewpoint than Figure 1.
The timings of DeBry et al. [2002] software implementation was
about one minute to render a 2048× 1200 still image on a 1Ghz
Pentium III. This proves that this approach benefits especially well
from our GPU implementation.

7.2 Performance

Rendering time
Performance for the examples presented in the paper are summa-
rized in Table 1. Measurements were done on a GeForceFX 6800
GT, without using the dynamic branching feature. The system is en-
tirely implemented in Nvidia Cg. The performance of our N3-tree
allows for fast rendering of color octree textures; but the complete
texture sprite system usually performs at a lower frame rate. The
main bottleneck comes from the maximum number of overlapping
sprites allowed. Note that we did not try to optimize GPU register
usage: The code is directly compiled using the Cg compiler (v1.3).

On hardware without true branching in fragment programs, a
lookup in our composite texture always involves as many computa-
tion as if Omax sprites were stored in the deepest leaves of the tree.
(Another consequence is that the rendering cost remains constant
independently of the number of sprites stored).

On hardware allowing branching we are in a favorable case. In-
deed, the tree leaves enclose large surface areas and thus neighbor-
ing pixels are likely to follow the same branching path.

Note that since the cost is in the fragment shader, the rendering
cost is mostly proportional to the number of pixels drawn: The ren-
dering of an object that is far or partly occluded costs less; i.e., you
pay only for what you see.

number node tree max. FPS
of sprites size depth overlap 800×600

Lapped 536 4 4 16 27
Gears 50 4 2 8 80
Stars 69 4 2 8 26

Octree (nearest mode) none 2 9 none 365
Blobby 125 4 3 10 70
Voronoi 132 4 3 12 56

Table 1: Performance for examples of Figure 1.

Memory usage
Our textures require little memory in comparison to the standard
textures needed to obtain the same amount of detail. Our tests show
that texturing the Stanford bunny with an atlas automatically gener-
ated by modeling software (see video) would require a 2048×2048
texture (i.e., 16 MB) to obtain an equivalent visual quality. More-
over, we show on the video how atlas discontinuities generate arti-
facts. The memory size used by our various examples is summa-
rized in Table 2. Note that since textures must have power of two
dimensions in video memory the allocated memory size is usually
greater than the size of the structure. The last column of Table 2 in-
cludes the size of the 2D texture patterns used for the demonstrated
application.

size of the allocated total
structure memory memory

Lapped 1 MB 1.6 MB 1.9 MB
Gears 0.012 MB 0.278 MB 0.442 MB
Stars 0.007 MB 0.285 MB 5.7 MB

Octree 16.8 MB 32.5 MB 32.5 MB
Blobby paint 0.141 MB 0.418 MB 0.434 MB

Voronoi 0.180 MB 0.538 MB 0.554 MB

Table 2: Storage requirements for examples of Figure 1.

8 Conclusions and future work

We have introduced a new representation to texture 3D models with
composite textures. The final appearance is defined by the blending
of overlapping texture elements, the texture sprites, locally applied
onto the surface. We thus reach very high texturing resolution at
low memory cost, and without the need for a global planar param-
eterization. The sprite’s attributes are efficiently stored in a hierar-
chical grid surrounding the object’s surface. Since this truly defines
a 3D texture sampled per–pixel, no modification of the textured ge-
ometry is required.

The system is flexible in many ways: Each sprite can be inde-
pendently animated, moved, scaled and rotated. This offers natural
support for many existing methods such as interactive painting on
surfaces, lapped textures rendering, dynamic addition of local de-
tails, all available within the same texturing system with better qual-
ity and using less memory. We also showed how our new represen-
tation can be used to create new texturing effects, such as animated
textures and textures reacting to mesh deformations.

We described a complete GPU implementation of our texturing
method, which achieves real–time performance. Moreover, if the
performance are not good enough for a given application, the com-
posite texture can be baked into a standard 2D texture using an ex-
isting parameterization (as shown in the video).

Future work
In this paper we have demonstrated several types of usage of our
system. However, the possibilities are endless and we would like
to explore other kinds of textures enabled by this sprite instan-
tiation scheme. In particular, approaches like painterly render-
ing [Meier 1996] could probably benefit from our texture represen-
tation. Among the possible improvements, we would like to define
sprite projector functions better than simple planar mapping in or-
der to minimize distortion. We also showed that relying on a spatial
structure – and no surface parameterization – the textured objects
are no longer required to be meshes. In particular, our approach
could prove interesting for point-based and volumetric representa-
tions.

9 Acknowledgments

We would like to thank John Hugues, Laks Raghupathi, Adrien
Treuille, and Marie–Paule Cani for proof–reading an early version
of this paper. Thanks to Emil Praun and Hugues Hoppe for pro-
viding us with the Lapped Textures result used in Figure 1, and to
Nvidia for providing us with the GeForce 6800 used for this work.
Also, many thanks to Laure Heïgéas and Gilles Debunne for their
help in creating the accompanying video, and to our reviewers for
their help in improving this paper.

References

BENSON, D., AND DAVIS, J. 2002. Octree textures. In Proceed-
ings of ACM SIGGRAPH 2002, 785–790.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. In Proceedings of
ACM SIGGRAPH 2003, 287–294.

DE BONET, J. S. 1997. Multiresolution sampling procedure for
analysis and synthesis of texture images. In Proceedings of ACM
SIGGRAPH 1997, 361–368.

DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002.
Painting and rendering textures on unparameterized models. In
Proceedings of ACM SIGGRAPH 2002, 763–768.

DISCHLER, J., MARITAUD, K., LÉVY, B., AND GHAZANFAR-
POUR, D. 2002. Texture particles. In Proceedings of the Euro-
graphics Conference 2002, 401–410.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting
for texture synthesis and transfer. In Proceedings of ACM SIG-
GRAPH 2001, 341–346.

FLEISCHER, K. W., LAIDLAW, D. H., CURRIN, B. L., AND
BARR, A. H. 1995. Cellular texture generation. In Proceed-
ings of ACM SIGGRAPH 1995, 239–248.

KRAUS, M., AND ERTL, T. 2002. Adaptive Texture Maps. In
Proceedings of the ACM SIGGRAPH / Eurographics Conference
on Graphics Hardware 2002, 7–15.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. In Proceedings of ACM SIGGRAPH 2003.

LEFEBVRE, S., AND NEYRET, F. 2003. Pattern based procedural
textures. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics 2003, 203–212.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. GPU Gems
II: Programming Techniques for High–Performance Graphics
and General–Purpose Computation. Addison–Wesley, ch. Oc-
tree Textures on the GPU. ISBN 0-32133-559-7.

LEFEBVRE, S. 2003. ShaderX2: Shader Programming Tips &
Tricks. Wordware Publishing, ch. Drops of water texture sprites,
190–206. ISBN 1-55622-988-7.

MEIER, B. J. 1996. Painterly rendering for animation. In Proceed-
ings of ACM SIGGRAPH 1996, 477–484.

MILLER, N. 2000. Decals explained. http://www.
flipcode.com/articles/article_decals.shtml.

NEYRET, F., HEISS, R., AND SENEGAS, F. 2002. Realistic
Rendering of an Organ Surface in Real-Time for Laparoscopic
Surgery Simulation. The Visual Computer 18, 3, 135–149.

PEACHEY, D. R. 1985. Solid texturing of complex surfaces. In
Proceedings of ACM SIGGRAPH 1985, 279–286.

PERLIN, K. 1985. An image synthesizer. In Proceedings of ACM
SIGGRAPH 1985, 287–296.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. In Proceedings of ACM SIGGRAPH 2000, 465–470.

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchi-
cal pattern mapping. In Proceedings of ACM SIGGRAPH 2002,
673–680.

TURK, G. 2001. Texture synthesis on surfaces. In Proceedings of
ACM SIGGRAPH 2001, 347–354.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In Proceedings of ACM
SIGGRAPH 2000, 479–488.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over ar-
bitrary manifold surfaces. In Proceedings of ACM SIGGRAPH
2001, 355–360.

WEI, L.-Y. 2004. Tile-based texture mapping on graphics hard-
ware. In Proceedings of the ACM SIGGRAPH / Eurographics
Conference on Graphics Hardware 2004, 55–64.

WORLEY, S. P. 1996. A cellular texturing basis function. In Pro-
ceedings of ACM SIGGRAPH 1996, 291–294.

