
Real-time Collision Detection for
Virtual Surgery

Jean-Christophe Lombardo,
EPIDAURE/SINUS, INRIA, 2004 route de Lucioles,

06192 Sophia Antipolis Cedex, France

Jean-Christophe.Lombardo@sophia.inria.fr

Marie-Paule Cani and Fabrice Neyret
iMAGIS

�
-GRAVIR / IMAG

BP 53, 38041 Grenoble cedex 09, France

Marie-Paule.Cani@imag.fr, Fabrice.Neyret@imag.fr

Abstract

We present a simple method for performing real-time
collision detection in a virtual surgery environment. The
method relies on the graphics hardware for testing the inter-
penetration between a virtual deformable organ and a rigid
tool controlled by the user. The method enables to take into
account the motion of the tool between two consecutive time
steps. For our specific application, the new method runs
about a hundred times faster than the well known oriented-
bounding-boxes tree method [5].

Keywords: Collision detection, Virtual Reality,
Physically-based simulation, Graphics hardware.

1. Introduction

Collision detection is considered as a major computa-
tional bottleneck of physically-based animation systems.
The problem is still more difficult to solve when the sim-
ulated objects are non-convex and when they deform over
time. This paper focuses on the specific case of collision
detection for a surgery simulator aimed at training surgeons
at minimally invasive techniques (ie. laparoscopy).

1.1. Virtual surgery

Non-invasive surgery is rapidly expending, since it
greatly reduces operating time and morbidity. In particu-
lar, hepatic laparoscopy consists in introducing several tools
and an optic fiber supporting a micro-camera through small
openings cut into the patient’s abdomen. The surgeon, who
has to cut and to remove the pathologic regions of the liver,
only visualizes the operation onto a screen. Learning to co-
ordinate the motion of the tools in these conditions is a very�

iMAGIS is a joint project of CNRS, INRIA, Institut National Poly-
technique de Grenoble and Université Joseph Fourier.

difficult task. Figure 1 shows a typical tool used for laparo-
scopic surgery and a view of the control screen during an
operation.

Figure 1. A minimally invasive surgery tool
(top). View from the control screen (bottom).

The aim of surgery simulators is to offer a platform en-
abling the surgeons to practice on virtual patients, thus get-
ting rid of financial and ethical problems risen by training
on living animals or on cadavers.

Virtual surgery brings a number of difficulties: It re-
quires both the abilities to interact in real-time with the vir-
tual organs through a force-feedback device and to perform

a real-time visualization of the deformations. Moreover, the
computed images should include as much visual realism as
possible (texture of the organs, specular effects due to the
optic fiber light, etc). In this context, the time that remains
for performing collision detection at each simulation step
is extremely small. The remainder of this paper focuses
on this specific aspect of the problem. This work is a part
of a wider project1 that studies all the aspects of the prob-
lem, including real-time deformable models devoted to the
physically-based simulation of the organs [3].

1.2. Collision detection techniques

Due to its wide range of applications, collision detection
between geometric models have been studied for years in
various fields such as CAD/CAM, manufacturing, robotics,
simulation, and computer animation. The solutions vary ac-
cording to the geometric representation of the colliding ob-
jects and to the type of query the algorithm should support.
For instance, softwares that maintain the minimal Euclidean
distance between the models are often required in motion
planning application.

In our background of a surgery simulator, we are in-
terested into methods that detect interpenetrations between
polygonal models, since the latter are the most convenient
for real-time rendering. We do not need to know the Eu-
clidean distance between non-colliding objects. However,
when a collision occurs, the precise knowledge of the inter-
section region is needed, since it will allow a precise com-
putation of subsequent deformations and of response forces.

Most of the previous work in collision detection between
polygonal models has focused on algorithms for convex
polyhedra [1, 8]. These algorithms, based on specific data-
structures for finding the closest features of a pair of poly-
hedra, exploit temporal and geometrical coherence during
an animation. They are very efficient: the algorithm in [8]
runs in roughly constant time even when the closest features
change. However, they are not applicable in the case of a
surgery simulator, since organs are generally non-convex,
and deform over time.

Among the collision detection methods that are applica-
ble to more general polygonal models [10, 2, 12, 4, 11, 13,
5, 7], almost all of the optimizations rely on a pre-computed
hierarchy of bounding volumes. The solutions range from
axis-aligned box trees, sphere trees [12, 11, 7], or BSP trees,
to more specific data structures [2]. All these techniques,
which perform very efficient rejection tests, may consider-
ably slow down when objects are very close, ie. when the
bounding volumes have multiple intersections. Among the
recent approaches for finding bounding volumes that tighter
fit the object’s geometry, Gottschalk [5] obtains very good

1http://www.inria.fr/epidaure/AISIM

results by using hierarchies of oriented bounding boxes in-
stead of axis-aligned boxes. Section 5 will compare our new
method with the public domain software package RAPID
that implements this technique.

A last issue in collision detection is the ability to per-
form dynamic rather than static detection [10, 4]: moving
objects may interpenetrate between consecutive time steps,
so the intersections should be computed between the 4D
volumes that represent the solids’ trajectories during a time
step rather than between static instances of the solids. In the
context of a large environment with lots of moving objects,
using space-time bounds on the object’s motion may lead to
the quick rejection of a number of intersection tests [9, 6, 7].

In previous works on laparoscopic surgery [3], a dy-
namic collision detection was performed by testing for an
intersection between the segment traversed by the tool ex-
tremity during a time step and the polygonal mesh repre-
senting the organ. A bucket data-structure discretizing the
organ’s bounding box, and storing local lists of polygons,
was used to optimize this test. Real-time performances were
obtained with a scene consisting in an organ and two tools,
when no update of the bucket data-structure was needed.
However, each tool was modeled as a single point, which re-
sulted into possible penetrations of the body of the tools into
the organ when an unexperimented user was trying to posi-
tion them. Moreover, considering no update of the bucket
structure was very restrictive concerning the possible defor-
mations of the organ.

1.3. Overview

In the context of surgery simulation, the collision detec-
tion problem is enhanced by the non-convexity of most of
the organs, and by the fact they deform over time. These
deformations are far from negligible : laparoscopy typi-
cally involves large scale deformations and even topologi-
cal changes in the structure of the liver since some parts are
cut down and removed. In this context, spending time for
pre-computing complex bounding volumes does not seem
adequate, since this computation will need to be redone at
each time step.

A second point is that, even if the number of colliding
objects remains small (usually: an organ of interest and few
surgical tools), objects usually stay in very close configura-
tions. Collisions or contacts may occur at almost each time
step, since the surgeon uses the tools to manipulate the vir-
tual organ. Basically, whatever the method, an intersection
test between each tool and the organ will be needed at each
time step.

Thirdly, collisions need to be detected even during a
fast motion of the tools, otherwise incorrect response forces
would fed back to the user. So using dynamic detection, at
least for the tools motion seems indispensable.

Fortunately, the sum of features of the problem ease
its resolution: only one of the objects (the organ) has a
complex shape since the tools used in non-invasive surgery
can be represented by thin and long cylinders (see Fig-
ure 1(a)). Moreover, the tools have a constrained motion
since they enter into the patient’s abdomen through small
circular openings. These two properties enable us to take
benefits of the graphics hardware for detecting collisions in
real time.

The remainder of this paper develops as follows: Sec-
tion 2 explains how the graphics hardware may bring a so-
lution to our problem. Section 3 gives a method for per-
forming static collision detection between a tool and the
polygonal model of an organ. This method is extended in
Section 4 in order to take the dynamic motion of the tool
into account. Section 5 presents our results, including a nu-
merical comparison of computational times with the public
domain software RAPID.

2. Collision detection with the graphics hard-
ware

Our aim is to find a real-time collision detection method
that allows us to take the whole tool into account instead of
just considering its extremity. Detecting a collision between
two objects basically consists in testing if the volume of
the first one (ie. the tool, which has quite a simple shape),
intersects the second one. This process is very close to a
scene visualization process: in the latter, the user specifies a
viewing volume (or frustum), characterized by the location,
orientation and projection of a camera; then, the first part of
the visualization process consists in clipping all the scene
polygons according to this frustum, in order to render only
the intersection between the scene objects and the viewing
volume. Specialized graphics hardware usually performs
this very efficiently.

Thus, the basic idea of our method is to specify a view-
ing volume corresponding to the tool shape (or alternatively
to the volume covered by the tool between two consecutive
time steps). We use the hardware to “render” the main ob-
ject (the organ) relatively to this “camera”. If nothing is
visible, then there is no collision. Otherwise we can get the
part of the object that the tool intersects.

Several problems occur: firstly, the tool shape is not as
simple as usual viewing volumes. Secondly, we don’t want
to get an image, but we need meaningful information in-
stead. More precisely, we would like to know which object
faces are involves in a collision, and at which coordinates.
The OpenGL graphic library provides features that will al-
low us to model our problem in these terms. We review
them in the next sections.

2.1. Viewing volumes

The most common frustum provided by OpenGL are
those defined by an orthographic camera and by a perspec-
tive camera. In both cases, viewing volumes are hexahedra,
respectively a box and a truncated pyramid, specified by six
scalar values (see Figure 2).

Moreover, the user may add extra clipping planes for
further restricting of the viewing volume, using glClip-
Plane(). All the versions of OpenGL can treat at least six
extra planes, so the viewing volume can be set to a dodec-
ahedron. However, we must keep in mind that efficiency
decreases each time an extra clipping plane is added.

2.2. Picking

The regular visualization process is divided into a geo-
metrical part and a rasterization part. The geometrical part
converts all the coordinates of the scene polygons into the
camera coordinate system, clips all the faces relatively to
the viewing volume, and achieves the orthographic or the
perspective projection in order to get screen coordinates.
The rasterization part transforms the remaining 2D trian-
gles into pixels, taking care of the depth by using a Z-buffer
in addition to the color buffer.

Computing the first part of the process is sufficient for
the applications that only require meaningful informations
about visible parts of the scene. A typical example is the
picking feature in 3D interaction: a 3D modeler needs to
know which object or face is just below the mouse, in or-
der to operate on it when the user clicks. If several objects
project on the same pixel, it can be useful to know each
of them. In 3D paint systems, the program rather needs
to know the texture coordinate corresponding to the pixel
which is below the mouse.

OpenGL provides two picking modes, that may be
selected alternatively to the usual rendering mode
GL_RENDER thanks to the function glRenderMode().
For these two modes, no rasterization is performed. More-
over, costly operations such as lighting are usually turned
off. The picking modes differ from the informations they
give back:� the select mode GL_SELECT provides information

about the visible groups of faces. A group name is
given using glPushName() before each group of
faces drawing, and OpenGL fills an array (provided by
glSelectBuffer()) during the geometric pass of
rendering, writing an entry per group that appears in
the viewing volume. Thus one can know the faces that
appear on screen. If the window has been reduced to a
single pixel around the mouse, one gets the faces that
appear below the mouse. If the camera geometry has
been set in order to specify a given viewing volume,

viewing volume

point of view
z

xy

���������������� ������������	
	�
��
�
��
�
�

������ �������������������� L
R

B

N F

T

near clipping plane far clipping plane

���������������������� ������������������� � �! ! " "# #$�$%�%&�&&�&'�''�' (�((�(
)�))�)*�*+,�,,�,-�--�-

Tpoint of view

z

FN
R

B

L

x

y

near clipping plane viewing volume

far clipping plane

Figure 2. (a) The OpenGL orthographic camera (left) and the OpenGL perspective camera (right). The
viewing volumes, which are either a box or a truncated pyramid, are characterized by the distances
to the far and near clipping planes and by the two intervals [left,right] and [top,bottom] which define
their section in the near clipping plane.

one gets the faces that intersect this viewing volume.
Each entry contains some extra information, e.g. the
z min and max inside the group, which can be used to
sort or choose between multiple answers.

� the feedback mode GL_FEEDBACK provides extended
information about the transformed and clipped scene.
Basically, all the produced data can retrieved. The
programmer indicates which kind of information he
is interested in (positions, normals, colors, texture co-
ordinates, ...), and provides an array with glFeed-
backBuffer() that is filled by OpenGL during the
geometrical rendering pass. In the same way that
above, the scene may be clipped to a 1 pixel size
window around the mouse, in order to get the geo-
metric data corresponding to the mouse location. A
naming mechanism similar to the previous one, using
glPassThrough(), allows to get in addition the in-
formation of the faces (or groups of faces) numbers
appearing in the viewing volume.

Since hardware is used to compute transformations and
clipping, and since no rasterization is performed (which
means that almost all interpolations are suppressed), both
picking processes are particularly efficient.

3. Static Collision Detection

Laparoscopic surgery tools can be seen as cylinders of
constant section . and of varying length, since user may
pull or push them more or less widely into the patient’s ab-
domen. In the remainder of the paper, we call /10 the fixed
point where the axis of a tool starts (/10 is the center of the
small opening the tool passes through), and / the extremity
of the tool. Static collision detection between a tool and the

polygonal mesh representing the organ can easily be per-
formed by associating an orthographic camera to the tool.

The camera is positioned at point /20 and the viewing
direction is set to 34/ 065 /87 , thanks to the function glu-
LookAt(). Near and far parameters are respectively set
to 0 and to 9:/<;=/20 9 . The tool section is taken into ac-
count by setting the left, right, top and bottom parameters
of the camera according to the shape of the real tool extrem-
ity. The corresponding code is:

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();

// compute distance between
// far and near clipping planes
l = norm(P-Po);

// push the orthographic camera on
// projection matrix stack
glOrtho(-s,s, -s,s, 0, l);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

// move the camera to set eye at Po
// and looking at P
gluLookAt(Po[0], Po[1], Po[2],

P[0], P[1], P[2],
up[0], up[2], up[1]);

// redraw the scene with some glNames
// pushed
redraw();

For our application, we simply want to detect which
faces of the liver are in contact with the tool. Thus we use
the select picking mode, with one different primitive name
per liver face: each glBegin(GL_TRIANGLES) is pre-
ceded by glLoadName(t)where > is the triangle number.
At the end of the rendering, the first row of the select array

contains the number of hit triangles, then for each triangle
items consisting in the z min and max and the face num-
ber. The exact coordinates of the intersection points could
be obtained using the feedback mode.

4. Taking the motion of the tool into account

The simple solution presented in the previous section
tests the collision between a static position of the tool and
the organ at a given time step. This suffers from the classical
flaws of time discretization: if the user hands move quickly,
the tool may deeply penetrate inside the organ before being
repulsed. It may even cross a thin part of the organ without
any collision being detected.

P

P’

?

Po

Figure 3. Tool movement between two simu-
lation steps.

In order to avoid these classical problems, we present
an extension which takes into account the volume covered
by the tool during a time step (we still neglect the dynamic
deformations of the organ during this time period). In our
model, the tool goes through the patient’s abdominal wall
at the fixed point /20 , and is able to slide through this point,
so its length varies over time. We assume that the active
extremity of the tool follows a straight line trajectory from/ to /@? . The area covered by the axis of the tool is thus
the triangle / 065 / 5 /@? (see Figure 3). Since the tool may
be seen as a cylinder of radius . , the volume covered by the
tool during the time-interval is obtained by enlarging and
thickening the triangle by the distance . . It is thus an hex-
ahedron, as shown in Figure 4. As in the previous section,
our aim is to model this volume using OpenGL cameras and
clipping planes.

The simplest way to do this consists in using an ortho-
graphic projection, which parallelepipedic viewing volume
corresponds to the bounding box of the hexahedron (see
Figure 5): bottom and top, near and far correspond to the
hexahedron; two extra clipping planes are used to model
the sides / 0 / and / 0 /@? . However, this naive construc-
tion has some flaws. For instance, the orthographic viewing

P

P’

P0

Figure 4. Volume covered by the tool during a
time interval.

P0

P

P’

cl
ip
pi
ng
 p
la
ne

clipping plane

view point

orthographic
clipping area

v
i
e
w

p
l
a
n
e

Figure 5. Naive approach using an ortho-
graphic camera.

volume will be excessively large when /2/2? is far from or-
thogonal to /20A/ (see Figure 6). The consequence is that
a lot of faces will be accepted during the clipping with the
frustum, and rejected later during clipping with the user-
defined clipping-planes. This increases the cost, since the
latter is more computationally intensive than clipping with
the canonical viewing volume.

Thus, we construct the test-volume using OpenGL in a
more complex way, in order to use intermediary volumes
that are as small as possible. Our construction is based
on a perspective viewing volume whose cone follows the
segments / 0 / and / 0 / ? , as shown in Figure 7. This is
done by setting the camera axes to /2/1? for the B axis,/@0A/@?DCE/@0F/ for the G axis, and /2/2?DCH34/@0F/@?ICJ/@0A/87
for the K axis. As previously, the triangle is enlarged on
each side by the tool section . . We set the 34>MLON 5QP LR>M>MLTSU7
interval in the near clipping plane to VW. . Since the camera
is a perspective camera, we have to add two extra clipping
planes in order to limit the vertical extent of the volume to

P0

P P’

Figure 6. Configuration where the viewing vol-
ume is much too large before the addition of
the two extra clipping planes.

2sN

F

P P’

l r
x

z

Po

Eye

Figure 7. (x,z) plane of the perspective camera

VW. everywhere (see Figure 8).
To set the camera to this configuration, the eye positionX
must be computed from the points / 0Y5 / 5 /@? . Let Z be:

Z\[/2/@?9:/2/ ? 9
We use it to set the left and right limits of the viewing vol-
ume in the near and far clipping planes:

/@0T]
[^/@02;_.TZ
/@0a`b[^/@0dce.TZ
/] [</<;_.TZ
/ ?` [</ ? cf.TZ

From Thales theorem we get:

9:gh/ 0a] 99igd/2]M9 [9igd/ 0a` 99igd/ ?` 9 [9i/ 0a] / 0a` 99:/2]j/ ?` 9

E N

F

y+s

y-s

Po

P P’

Figure 8. Reducing the viewing volume with
clip planes

This yields:

g<[</ 0a] ; 9i/@0a]k/@0a`A99:/] / ?` 9l;^9:/ 0T] / 0m` 9 / 0a] /]
Thus we set the OpenGL perspective camera parameters to:

n [ogh/ 0a]Yp Z
q [n ceVW.r [s9:gh/ 0a] ; n Zt9u [v9:gh/2]Y;e3wgd/2] p Zx7wZt9y [oc@.z [{;|.

We finally add the two extra clipping planes Ge[};|. andG~[�. depicted in Figure 8. This leads to the follow-
ing pseudo-code, where fixed is /1� , oldPos is / , and
newPos is /@? :

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
u = (newPos - oldPos)

/norm(newPos-oldPos);
P0l = fixed - s*u; P0r = fixed + s*u;
Pl = oldPos - s*u; Pr = newPos + s*u;
E = P0l;
E -= norm(P0l - P0r)

/(norm(Pl - Pr) - 2*s) * (Pl - P0l);
L = dot(P0l-E, u); R = L+2*s;
B = -s; T = s;
near = norm (P0l-E - L*u);
far = norm (Pl-E - dot(Pl-E,u)*u);

// define the projection
glFrustum(L, R, B, T, near, far);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

// clipping planes have to be placed in
// MODELVIEW matrix, but we define them

// if camera referential, so define them
// BEFORE gluLookAt()
GLdouble plan1[4] = {0,1,0,s};
GLdouble plan2[4] = {0,-1,0,s};
glClipPlane(GL_CLIP_PLANE0, plan1);
glClipPlane(GL_CLIP_PLANE1, plan2);
up = cross(E-Pr, E-Pl);
F = (Pl - dot(Pl-E, u)*u);

// move the camera to set eye at E
// and looking at F, with up set up[]
gluLookAt(E[0], E[1], E[2],

F[0], F[1], F[2],
up[0], up[1], up[2]);

// activate the clipping planes
glEnable(GL_CLIP_PLANE0);
glEnable(GL_CLIP_PLANE1);

// redraw the scene with some glNames
// pushed
redraw(NULL);
glDisable(GL_CLIP_PLANE0);
glDisable(GL_CLIP_PLANE1);

5. Results

We have done a series of cross-tests to bench our colli-
sion methods:

� using our liver geometry (1224 triangles) or a simple
tetrahedron (4 triangles),

� testing either static collisions with the tool at a time
step (‘static’) or collision with the volume covered by
the tool during a time interval (‘dynamic’), as depicted
in Figures 9 and 10,

� testing dynamic collision with different numbers of
colliding faces (between 5 and 25 for the liver, between
0 and 3 for the tetrahedron).

� comparing our method with the reference software
package RAPID2 implementing Obb trees [5],

� running on various hardwares and graphic accelera-
tors.

Figure 11 sums up the comparisons of computational times
between our method and the RAPID software on various
platforms (each given time is a mean value between ten tri-
als of different collision configurations). Since the same
compiler (gcc/egcs) was used on all platforms for compat-
ibility reasons, the results cannot be used for a direct com-
parison between platforms (gcc uses to produce inefficient

2http://www.cs.unc.edu/ geom/OBB/OBBT.html

code on SGI). The meaningful comparison is the ratio be-
tween the two methods depending on the graphics and com-
putational performances of the platform3.

The Obb tree method used in RAPID needs precom-
puting the hierarchical data structure. In our applica-
tion where the liver deforms over time, RAPID’s data-
structure would have to be updated at each time step. Since
there is no method for doing so to the authors knowl-
edge, we compared our method with the use of RAPID
where pre-computations are redone at each time step. Our
method then brings an acceleration factor from 150 on high-
end hardwares to 12 with a software implementation of
OpenGL (however,Obb trees would probably give better re-
sults if an efficient update algorithm taking advantage of
temporal coherence was developed). To be fair, we also
computed the acceleration factor without taking RAPID’s
pre-computation into account. Even in this case which is
only applicable to rigid objects, our method nearly brings
an acceleration factor of five for each collision detection on
high-end hardware. All these results are summarized in Fig-
ure 12.

6. Conclusion

We have presented a simple and very efficient method for
detecting collisions between a general polygonal model and
one or several cylindrical tools. Due to its impressive per-
formances, the method is directly applicable in the context
of a real time surgery simulator.

Since no pre-computation is required, our methods ide-
ally fits to dynamic scenes where objects move and deform
over time. As a comparison, the reference code RAPID,
that is particularly fast, is five times slower assumed that
pre-computations are already done, which is not possible
for deformable bodies. Our method could thus be useful
in many other applications, such as interactive sculpturing
where the user manipulates a rigid tool for editing a 3D de-
formable shape.

The approach could also be generalized to be applied in
more general collision configurations: here, one of the col-
liding objects has a simple geometry. In the general case
with complicated shapes, our approach could be used to
quickly test the collision between an objet and a non axis-
parallel bounding box (or even a bounding dodecahedron)
surrounding another object. If the second object is embed-
ded into a hierarchy of bounding boxes, this idea could lead
to an acceleration of the general Obb tree method. Lastly,
since one of the objects can be a mere soup of polygons
changing over time, the method could be applied to the

3Concerning our method, we can note that the relatively bad results on
the 3Dfx may be due to the fact that this architecture is not pipelined. On
pipelined architectures (Onyx and 4D60), the collision detection time is
almost constant when the scene size varies from 4 to 1224 triangles.

Figure 9. Collision detection between a triangular mesh modeling a human liver and a static position
of a tool (which is visualized as a segment).

real-time collision detection between any deformable object
(from an elastic surface or volume to a liquid substance) and
rigid obstacles embedded into pre-computed hierarchies of
bounding volumes.

Moreover, our method is extremely easy to imple-
ment (only few dozen lines of codes in an application us-
ing OpenGL for visualization), portable (OpenGL exists on
most platforms) and benefits from different graphics hard-
ware as constructors generally offer an optimized imple-
mentation of OpenGL .

References

[1] D. Baraff. Curved surfaces and coherence for non-
penetrating rigid-body simulation. Computer Graphics,
24(4):19–28, Aug. 1990. Proceedings of SIGGRAPH’90.

[2] V. Bouma and G. Vanecek. Collision detection and analy-
sis in a physically-based simulation. In Second Eurograph-
ics Workshop on Animation and Simulation, pages 191–203,
Vienna, Austria, 1991.

[3] S. Cotin, H. Delingette, and N. Ayache. Real-time elastic
deformations of soft tissues for surgery simulation. IEEE
Transactions on Visualization and Computer Graphics, (in
press), 1998.

[4] A. Garica-Alonso, N. Serrano, and J. Flaquer. Solving the
collision detection problem. IEEE Computer Graphics and
Applications, 13(3):36–43, 1994.

[5] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierar-
chical structure for rapid interference detection. Computer
Graphics, Proceedings of SIGGRAPH’96, pages 171–180,
Aug. 1996. A public domain software package is available
at : http://www.cs.unc.edu/ geom/OBB/OBBT.html.

[6] P. Hubbard. Collision detection for interactive graphics ap-
plications. IEEE Transactions on Visualization and Com-
puter Graphics, 1(3):218–230, 1995.

[7] P. Hubbard. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on
Graphics, 15(3):179–210, 1996.

[8] M. Lin and J. Canny. Efficient collision detection for ani-
mation. In Third Eurographics Worshop on Animation and
Simulation, Cambridge, England, Sept. 1992.

[9] M. Lin and D. Manocha. Fast interference detection between
geometric models. The Visual Computer, 11(10):542–561,
1995.

[10] M. Moore and J. Wilhelms. Collision detection and response
for computer animation. Computer Graphics, 22(4):289–
298, Aug. 1988. Proceedings of SIGGRAPH’88 (Atlanta,
August 1988).

[11] I. Palmer and R. Grimsdale. Collision detection for an-
imation using sphere-trees. Computer Graphics Forum,
14(2):105–116, 1995.

[12] S. Quinlan. Efficient distance computation between non-
convex objects. In International Conference of Robotics and
Automation, pages 3324–3329, 1994.

[13] P. Volino, M. Courchesne, and N. M. Thalmann. Versatile
and efficient techniques for simulating cloth and other de-
formable objects. Computer Graphics, pages 137–144, Aug.
1995.

Figure 10. Dynamic collision detection, where the tool motion during a time interval is taken into
account (this volume covered by the tool is visualized as a single triangle).

Using our OpenGL based method:
processor R10000 DEC alpha Pentium2 Pentium2

195 MHz 500 MHz 333Mhz 333Mhz
graphic Onyx2 IR 4D60 software 3Dfx Voodoo2

(Linux Mesa) (Linux Mesa)
static 0.13 ms 0.09 ms 2.2 ms 1.7 ms
dynamic 0.16 ms 0.11 ms 3.0 ms 2.3 ms

Using the Obb tree method:
processor R10000 DEC alpha Pentium2

195 MHz 500 MHz 333Mhz
Precomputations 24.1 ms 15.7 ms 35.6 ms
static 0.63 ms 0.44 ms 1.0 ms
dynamic 0.76 ms 0.48 ms 1.2 ms

NB: static means considering a single position for the tool
dynamic means considering the tool positions during a time interval

Figure 11. Collision detection times

Acceleration factor Deformable objects Rigid objects
static dynamic static dynamic

SGI Onyx 190 155 4.8 4.75
DEC alpha 179 147 4.9 4.4

Pentium (soft) 16.6 12.2 0.45 0.4
Pentium (3Dfx) 21.5 16 0.59 0.52

NB: Deformable objects means considering RAPID’s precomputation time,
Rigid objects means igonring RAPID’s precomputation time.

Figure 12. Acceleration factor provided by our method w.r.t. RAPID

