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ABSTRACT

Rivers are ubiquitous in nature, and are thus an important visual component in the

simulation of natural scenes. Because rivers are dynamic in nature, it is necessary to

animate their flow in these visual simulations. Realistic animation of rivers is a chal-

lenging problem because convincing simulations must incorporate multi-scale surface

details and flow motion, and many of the phenomena involved have complex underlying

physical causes. River animation is particularly difficult in emerging interactive appli-

cations such as Google Earth or video games that allow users to explore a very large

scene and to dynamically decide whether to observe rivers at very small or large scales.

Controlling the design of water simulations is another hard problem.

The goal of this dissertation is to achieve real-time, scalable, and controllable river

animation with a detailed and space-time continuous appearance. To achieve this real-

ism, the river animation problem is broken down into macro-, meso-, and micro-scale

subproblems ranging from coarse to fine. We propose appropriate models for each scale

that capture relevant surface details and fluid motion. In the macro-scale, we propose a

procedural method that can compute the velocities of rivers with curved banks, branch-

ings and islands on-the-fly. In the meso-scale, we propose an improved phenomeno-

logical method for simulating the quasi-stationary waves that are made by obstacles.

Moreover, we propose a method for constructing an adaptive and feature-aligned water

surface. In the micro-scale, we propose the use of wave sprites, a sprite-based tex-

ture model, to represent advected details with stationary spectrum properties on flow

surfaces. Armed with wave sprites and a dynamic adaptive sampling scheme, we can

texture the surface of a very large or even unbounded river with scene-independent per-

formance. In addition, we propose a spectrum-preserving texture advection method that

has useful applications beyond river animation.

We demonstrate that the combination of our models across three scales helps us

incorporate visually convincing animated rivers into a very large terrain in real-time

interactive applications.

Keywords: image synthesis; natural phenomena; animation; rivers; real-time; dy-

namic texture
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RESUME

Les rivières sont fréquentes dans la nature, et sont donc importantes dans une si-

mulation de scènes naturelles 3D. Afin de reproduire l’écoulement des rivières réelles,

ces rivières virtuelles doivent être animées. Mais ceci est un problème difficile. Il faut

prendre en compte des détails de surface et des mouvements à plusieurs échelles, et la

plupart des phénomènes impliqués ont des causes physiques sous jacentes complexes.

L’animation de rivières est particulièrement difficile dans le contexte d’applications in-

teractives émergentes telles que Google Earth ou certains jeux vidéos, qui permettent à

l’utilisateur d’explorer une scène très vaste et d’y observer des rivières de très près ou

de très loin, à n’importe quel moment. Le contrôle utilisateur des simulations de fluide

est un autre problème difficile.

Le but de cette thèse est d’obtenir des rivières animées en temps-réel sur de très

grand terrains, avec une animation contrôlable et un rendu détaillé et continu en temps

et en espace. Pour atteindre ce but nous décomposons le problème en 3 sous-problèmes

pour les grandes, moyennes et petites échelles. Nous proposons des modèles appropriés

pour chaque échelle, qui représentent correctement les détails et les mouvements du

fluide à l’échelle considérée. Pour les grandes échelles nous proposons une méthode

procédurale pour calculer à la volée la vitesse d’écoulement de rivières de formes quel-

conques, avec des affluents et des ı̂les. Pour les moyennes échelles nous proposons une

méthode de simulation spécifique pour générer les vagues quasi stationnaires causées

par les obstacles. Nous proposons également une méthode pour construire un maillage

adaptatif aligné avec les lignes de crête de ces vagues. Pour les petites échelles, nous

proposons une méthode à base de sprites texturés pour représenter les petits détails

dont le spectre est stationnaire et qui sont advectés avec la rivière. Complétés par un

échantillonnage adaptatif, cette méthode nous permet de texturer de très grandes rivières,

les performances étant indépendantes de la complexité de la scène. Nous proposons

également une méthode lagrangienne pour l’advection de texture, qui peut s’appliquer

à d’autres domaines que l’animation de rivières.

Nous montrons que la combinaison de nos trois modèles nous permet d’ajouter des
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rivières animées visuellement convaincantes dans de très grand terrains, dans des appli-

cations temps-réel interactives.

Mots-clés : synthèse d’image ; phénomènes naturels ; animation ; rivière ; temps-

réel ; dynamique texture
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Chapter 1

Introduction

The modeling of rivers is an important topic in computer graphics. Nowadays, more and

more graphics applications have the ambitious goal of presenting virtual but highly real-

istic nature scenes. In these scenes, rivers are often an indispensable feature. Examples

of such application include video games, simulators, geographic information systems,

landscape design and feature films. Furthermore, rivers are dynamic in nature, thus river

animation is desirable to improve the realism of these applications.

However, the animation of rivers is still a challenging problem. The modeling of

water or other fluids in computer animation has been studied for more than two decades,

but there are few existing techniques applicable for river animation. One challenge is

that the motion of river water has a wide range of scales. We would expect to see river

water flowing continuously in the kilometer scale, while having surface waves in the

millimeter scale. It is difficult to resolve all of the scales that affect the visual impression

of river surfaces fully in any single model. Another challenge is that many phenomena

relevant to river surfaces have very complicated underlying physical causes, such as

turbulence. The physically-based simulation models used in computer graphics still

cannot easily handle these causes. Therefore, even in off-line graphics, river animation

is often limited to a small domain and neglects many distinct surface features of rivers,

such as hydraulic jump.

This work targets emerging interactive applications like Google Earth [Goo08].

Such applications let users navigate in real-time even on a very large-scale global ter-

rain, where users can examine any feature in a very close or very wide view at any

moment. Thus, these applications introduce even more challenges for the animation
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algorithm. In this context, a good solution should convince users that a river is ani-

mated with visually believable details everywhere while maintaining a continuous flow.

Moreover, the algorithms must run in real-time with limited computational resources.

In practice, however, animation of rivers in this type of applications is either unavailable

(e.g., Google Earth) or approximated by using simple tricks (e.g., Crysis [Cry08]).

In many graphics applications, users need to design the scene and want to control

the animation. However, controlling simulation behavior is another challenging prob-

lem. For example, in physically-based numerical fluid simulations, traditionally this is

achieved by setting initial values or boundary conditions for the governing equations.

But it is difficult to predict the simulation behavior from these input parameters. An

ideal solution should provide designers with intuitive handles which are directly related

to the simulation behavior.

1.1 Thesis Statement

The thesis of this research is presented below:

We can achieve real-time, scalable and controllable river animation by

combining models appropriate to different scales of surface details and fluid

motion on current desktop hardware.

Our constraints are:

• Performance: We strive for 25 frames per second or more.

• Scalability: The rivers we handle can be very large and even unbounded, and

users must be allowed to observe the rivers in a very narrow view or in a very

broad view at any moment.

• Controllability: The models should provide intuitive handles for users to control

the behavior or appearance of the rivers on-the-fly.

• Quality: The animation should convey visually convincing fluid motion and ap-

pearance, and ensure spatial and temporal continuity.
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1.2 Overview

In this dissertation, we break down the river animation problem into macro-, meso-, and

micro-scale subproblems from coarse to fine. We propose appropriate models for each

scale that capture the relevant surface details and fluid motion. In the following, we

detail the problems, challenges, and our strategies for each scale.

1.2.1 Macro-Scale

A distinct overall visual impression of ordinary rivers is a continuous and smooth flow

through long streamlined channels, and past junctions and islands (Figure 1.1). To

reconstruct this in computer graphics, we need to determine the overall geometry and

velocity of a river. For everyday’s river, it is justified to assume that surface fluctuations

and vertical water motion do not contribute much to the visual impression in this scale.

Therefore, we can model rivers as 2-D steady flow, in which neither surface elevation

nor velocity varies with time.

Figure 1.1: Macro-scale: overall visual impression of rivers.

The main challenge here is to solve a large scale problem while limiting the com-

putation and memory cost in the real-time context. Solving 2D shallow water equations

numerically could generate the surface elevation and velocity that we want with rea-

sonable boundary conditions [Mol95]. However, this process cannot run in real-time

for large rivers. Moreover, for some graphics applications which aim at global-scale

navigation (such as Google Earth), even relying on pre-computation is also impractical.
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In this dissertation we focus on the animation problem. The shape of the river sur-

face could be generated with existing methods such as [KMN88] and [Bru08]. For

velocity, we resort to the procedural approach which is usually stable, fast, scalable and

controllable. We propose a stream-function based method that can generate visually

convincing channel flows on-the-fly. The evaluation of velocity only depends on the

geometries of local flow boundaries (banks and islands). The method also lets users

control the flow by flow rates, boundary conditions, and boundary geometries interac-

tively, without interrupting the animation.

1.2.2 Meso-Scale

Many surface waves in rivers are local and well-structured (Figure 1.2). These phe-

nomena are usually caused by the interaction between water flow and obstacles, or the

interaction between upwelling turbulence and free surfaces. These waves could be sta-

tionary or advected with the flow. Essentially, these phenomena attribute to the water

current, and thus they are characteristic features that make rivers look different from

ponds or lakes.

Few existing models in computer graphics are dedicated to simulating these phe-

nomena. Relying solely on traditional computer fluid dynamics (CFD) models is not

practical due to the complicated underlying physical causes. Because strong flow dis-

continuity and turbulence are often involved in these types of phenomena, applying the

CFD techniques directly would require very high-resolution discretization to capture

detailed surface features. Worse, sometimes the cause of a phenomenon is not local,

nor is it surface-based. For example, the phenomenon of boils shown in Figures 1.2d

and 1.3 is caused by ejections coming from the river bed [Jac76]. In this case, we

would have to simulate the whole water body, even though we are only interested in the

deformation of the water surface.

Our idea is to separate the representation for animation and rendering: we simulate

directly the features of a phenomenon using a vector representation, and then convert

the vector features to another appropriate representation (e.g., mesh) for high-quality

rendering. We call this two-step approach feature-based vector simulation. In this dis-

sertation we choose the stationary waves caused by obstacles as a case study to validate

our approach (Figure 1.2a). This phenomenon has been explored in [NP01] with a phe-
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(a) (b)

(c) (d)

Figure 1.2: Meso-scale: local and structured waves in running streams. (a) Quasi-

stationary waves caused by obstacles. (b) Capillary ship waves caused by submerged

obstacles. (c) Hydraulic jump caused by bed topography change. (d) Surface boils

(circular waves in the center) caused by upwelling water.

nomenological method that fits well to our approach. We improve their model for better

robustness and efficiency, and use it to simulate the dynamic vector feature of the target

waves. For efficient and quality rendering, we propose a technique to construct adaptive

and feature aligned water surfaces from the simulated vector information. Finally, we

achieve real-time and realistic animation of the stationary waves caused by obstacles.

1.2.3 Micro-Scale

One can always find abundant small waves continuously distributed on river surfaces

and advected with surface flow (Figure 1.4). Unlike the phenomena we have introduced
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Boil

Flow

(a)

0.1−1 m

0.2−4 m

Growth of boil

Onset of boil breakup

(b)

Figure 1.3: Schematic illustration of the mechanism of boils. (a) Boils are caused by

the interaction of ejections coming from the river bed with the water surface. (b) Devel-

opment of a typical boil. (Figures are reproduced from [Jac76])

in the macro-scale, these phenomena do not have distinct structural geometries, and

we mostly see their statistical properties. Simulating this kind of phenomenon is also

important to ensure the realism of river animation because the advection of these waves

conveys the flow motion of rivers.

Figure 1.4: Micro-scale: small waves on river surfaces.

There are some methods in computer graphics that aim at simulating small waves

similar to the phenomena mentioned above, including statistic-based methods [MWM87,

Tes04] or procedural methods [Per85, YHK07]. These methods can produce nice waves

for non-flowing water such as ocean waves. However, they neglect the advection of
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waves caused by water flow. It is not clear how to adapt these methods for rivers where

wave advection is a main surface characteristic.

One opportunity to solve the problem is to rely on texturing techniques because

these wave features are similar both in time and spatial space. Then the problem is how

to generate a texture sequence which confirms to a given flow field while preserving

the texture property of a given reference texture. The reference texture can be spec-

ified either by high-level procedural parameters or a texture example. Therefore, our

goal in this scale is to develop a flow-guided dynamic texture scheme adapted to large

surfaces while running in real-time. Our basic idea is to solve the problem from the

Lagrangian point of view. Our study in this category includes two parts. First, we pro-

pose a new sprite-based texturing technique called wave sprites. The technique runs

in scene-independent time by using a dynamic adaptive sampling scheme. Second, by

improving and generalizing the wave sprites model, we arrive at a spectrum-preserving

texture advection method that has applications beyond river animation.

1.3 Contributions

Besides the three-scale framework itself, the contributions of this dissertation include:

- A procedural method for generating the visually convincing velocity of channel flow

with complex boundaries, branchings, and obstacles on-the-fly. The method is real-

time, scalable to very large terrain and interactively editable. (Chapter 3)

- An adaptive sprite-based texturing method, wave sprites, for representing advected

details on flow surfaces. The method supports unbounded scenes, and runs with

scene-independent performance. (Chapter 5)

- A Lagrangian texture advection method ensuring both spatial and temporal continuity

and spectrum conservation in real-time. (Chapter 6)

- A dynamic Poisson-disk sampling scheme that runs in linear time. (Sections 6.2.1

and 5.2.1)

- An improved phenomenological model for simulating the waves made by obstacles

in real-time. (Chapter 4.1)

- A method to construct an adaptive water surface with waves on top to ensure real-time

and high-quality rendering. (Section 4.2)
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1.4 Organization

The remainder of this dissertation is organized as follows. The next chapter provides

a brief introduction to related work. Then, the following chapters present methods ad-

dressing each of the three scales: macro-scale (Chapter 3), meso-scale (Chapter 4),

and micro-scale (Chapters 5 and 6). In Chapter 3 we present a procedural method that

can generate visually convincing velocity on-the-fly for channel flow. In Chapter 4 we

present a feature-based vector simulation approach and choose waves caused by obsta-

cles in a stream as a case study. Chapters 5 and 6 both deal with detailed features on flow

surfaces, but with different emphases. In Chapter 5 we present an adaptive sprite-based

texturing method to handle large-scale animated surfaces efficiently. In Chapter 6 we

present a spectrum-preserving texture advection method. Finally, Chapter 7 concludes

and describes directions for future work.

1.5 French Introduction

Les résultats des recherches sont présentés ci-dessous :

Nous pouvons générer des animations de rivières en temps réel sur du

matériel actuel, à différentes échelles et contrôlables par l’utilisateur, grâce

à une combinaison de modèles adaptés à chaque échelle de détails et de

mouvement du fluide.

Nos contraintes sont les suivantes :

– Performance : Nous voulons au minimum 25 images par seconde ;

– Echelle : Les rivières que nous manipulons peuvent être très étendues, voire illi-

mitées. L’utilisateur doit pouvoir visualiser la rivière soit de très près soit d’un

point de vue très éloigné, et ce à n’importe quel moment ;

– Contrôle : Le modèle doit être aisément et rapidement (à la volée) paramétrable,

tant pour le comportement que pour le rendu de la rivière ;

– Qualité : L’animation doit être plausible, pour le mouvement et l’apparence. Il

doit y avoir une continuité spatio-temporelle.

Dans cette thèse, nous avons divisé le problème en trois sous problèmes : macro-,

meso-, et micro-échelle, du plus grossier au plus fin. Nous proposons un modèle appro-



9

prié pour chaque échelle, où chaque modèle retranscrit les détails inhérents à la surface

et à son mouvement, à l’échelle voulue.

En plus du modèle multi-échelle lui-même, nos contributions incluent :

- Une méthode procédurale pour générer une vitesse visuellement plausible du cours

d’un fleuve avec des rives complexes, des embranchements et des obstacles, à la

volée. Cette méthode est temps réel, fonctionne sur des terrains de grandes dimen-

sions et avec des rivières qui peuvent être éditées interactivement. (Chapitre 3)

- Une méthode de texturage adaptative, basée sur les sprites, wave sprites, pour le

transport de pertubations locales de la surface de la rivière. Cette méthode supporte

des scènes extrêmement étendues, et les performances ne dépendent pas de la scène.

(Chapitre 5)

- Une méthode d’advection de texture Lagrangienne assurant à la fois une continuité

spatio-temporelle et une conservation du spectre en temps réel. (Chapitre 6)

- Un schéma d’échantillonnage dynamique basée sur une distribution de disques de

Poisson mise à jour en temps linéaire. (Sections 6.2.1 et 5.2.1)

- Un modèle phénoménologique amélioré, basé sur une représentation vectorielle, pour

l’animation temps réel des vagues formées par les obstacles (Chapitre 4.1).

- Une méthode de génération de la surface de l’eau où les vagues sont modelisées

adaptativement, ce qui permet d’obtenir un rendu de bonne qualité en temps réel

(Section 4.2).

Le reste de cette thèse est organisé de la façon suivante. Le chapitre suivant présente

une courte introduction des travaux proches du nôtre. Dans le chapitre 3, nous présentons

une méthode procédurale permettant de générer à la volée et de manière plausible

la vitesse des courants des rivières. Dans le chapitre 4, nous présentons un modèle

phénoménologique basé sur une représentation vectorielle pour simuler les vagues formées

par les obstacles. Les chapitres 5 et 6 concernent l’animation des détails de la sur-

face d’un flux avec différents compromis performance vs qualité. Dans le chapitre 5,

nous présentons une méthode de texturage adaptative basée sur les sprites permettant

de gérer des terrains de grande taille efficacement. Dans le chapitre 6, nous présentons

une méthode d’advection de texture Lagrangienne, moins efficace mais donnant des

résultats de meilleure qualité. Enfin, le chapitre 7 présente une conclusion ainsi que les

différentes possibilités de travaux futurs.
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Chapter 2

Related Work

In this chapter, we first review previous work on computer animation of water. After

that, we cover previous work related to several individual components in our models.

2.1 Computer Animation of Water

2.1.1 Numerical Simulation

There are large literatures on simulating water by solving the governing equations nu-

merically. Since these methods usually do not fit well with large-scale and real-time

applications due to bad scalability, we review them briefly.

Early physically-based simulation work focused on waves on water surfaces rep-

resented by height fields. Under the assumptions of small wave amplitude and shal-

low water, Kass and Miller [KM90] used linear wave equation. Layton and van de

Panne [LvdP02] simulated waves by solving 2D shallow water equations with a semi-

Lagrangian time integration method. Chen et al. [CdVL95, CdVLHM97] used the

pressure solved from 2D Navier-Stokes equations to modulate the height of water sur-

faces. In a small bounded domain, these methods could be used for generating waves

in real-time interactive applications. Given sloping river beds, the shallow water model

can simulate river flow [Mol95]. However, it is difficult to set boundary conditions for

generating specific flow desired by users.

Solving full 3D Navier-Stokes equations on an Eulerian grid was pioneered in com-

puter graphics by [FM96, Sta99]. This approach has been successfully used for of-
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fline water animation by combining it with the level set method for tracking free sur-

faces [FF01, EMF02]. Though some efforts have recently succeeded in improving per-

formance by using adaptive grids [LGF04, IGLF06], the performance of their methods

is still far from real-time (Figure 2.1).

Figure 2.1: Simulation of a river by combining two-dimensional and three-dimensional

simulation techniques (2000×200 horizontal resolution) [IGLF06]. The method is able

to simulate complex water motion of rivers, however the computational cost is very

expensive (approximately 25 minutes a frame using 20 processors).

Lagrangian particle methods are also popular for solving fluid flow. Müller et

al. [MCG03] proposed a method based on smoothed particle hdrodynmaics (SPH) for

simulating fluids. For rendering free surfaces, they used point splatting and the marching

cubes method. Compared with the Eulerian grid approach, the Lagrangian particle ap-

proach tends to have better performance but suffers from the problem of reconstructing

a smooth surface. Kipfer and Westermann [KW06] used the SPH method for simulating

rivers in a bounded domain. They claimed interactive framerates while using a very low

density of particles that leads to the loss of surface details (Figure 2.2).

2.1.2 Non-Numerical Simulation of Water Waves

Instead of numerically simulating fluid motion, some wave models reconstruct the wa-

ter surfaces directly from the geometric or statistical properties of waves. This kind of

approach appeared earlier than did the physically-based simulation in graphics commu-

nities, but it is still the first choice in many today’s industry applications due to their

advantages of fast and stable computation, low memory cost and high controllability.
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(a) 8000 particles at 26 fps. (b) 20000 particles at 12.7 fps.

Figure 2.2: River simulation using SPH [KW06]. The method is able to simulate rivers

on complex terrain. However, real-time performance is available only when using a

limited number of particles. For a large scene, that leads to the loss of surface details.

Perlin noise [Per85] can be used for modeling random waves with very low compu-

tational cost. Classic procedural wave models approximate deep water waves by su-

perimposing sinusoidal functions [Max81, FR86, Pea86]. By introducing an adaptive

scheme, Hinsinger et al. [HNC02] achieved interactive animation of unbounded ocean

surfaces. Instead, FFT wave models [MWM87, Tes04] perform the superposition in

the spectrum domain, and thus the statistical wave spectrum of real ocean can be easily

applied. Later, Mitchell [Mit04] demonstrated a GPU implementation of this method.

While all these methods focus on ocean waves, some other procedural models deal with

local wave phenomena, such as stationary waves caused by obstacles in streams [NP01]

and ship waves [Gla02]. We revisit [NP01] and improve this work in Section 4.1. Most

recently, Yuksel et al. [YHK07] proposed a concept called wave particles to efficiently

simulate surface waves triggered by object-water interaction (Figure 2.3).

Note that all of the wave models mentioned above do not handle the effect of wave

advection which is highly desired in river animation because of its ability to convey the

underlying river flow. We tackle this problem in Chapters 5 and 6. In addition, we use

Perlin noise and the FFT wave model mentioned above to generate texture examples

required by our method.
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Figure 2.3: A result of wave particles [YHK07]. The method is able to simulate sur-

face waves with object intersections in real-time for a limited domain. However, it is

appropriate for situations that do not involve significant global flow.

2.1.3 Procedural Velocity Fields

Procedural methods can be used for constructing or enriching a flow field without nu-

merical simulation. Wejchert and Haumann [WH91] constructed flow velocity fields by

linearly superposing known analytic solutions of Laplacian equations. Chenney [Che04]

proposed a tiling method for generating divergence-free velocity fields. Bridson et

al. [BHN07] suggested to generate divergence-free velocity by taking the curl of a

scalar function (see Section 2.2). They also demonstrated how to generate divergence-

free velocity conforming to boundaries. Inspired from [BHN07], several models [KTJG08,

SB08, NSCL08] have been proposed recently for generating small scale turbulent veloc-

ity generally based on some noise models [Per85, PN01, CD05] and texture advection

method [Ney03]. Precisely, Kim et al. [KTJG08] advected wavelet noise [CD05].

Narain et al. [NSCL08] advected noise in the Lagrangian formalism. In addition,

both [SB08] and [NSCL08] have taken into account the evolution of turbulence energy.

2.1.4 Particles and Sprites

Particle systems [Ree83, RB85, Sim90] are the procedural equivalent of Lagrangian

CFD. They are currently often coupled with (animated) sprites to reconstruct a com-

plex appearance, in games [Won] and even sometime in featured films [IC00]. Still,

these methods are primarily used for splashing water. Note that flows based on video-

clips [BSHK04] could be considered as part of the same category.
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2.1.5 Mixed Models

Some groups have tackled water animation by treating visual features in different scales

with different models. O’Brien and Hodgins [OH95] proposed a 3-part system which

included a main volume, a fluid surface and the disconnected components of the fluid

(spray). Thon et al. [TDG00] described ocean surfaces with two levels of details, in-

cluding 2D trochoids and Perlin’s turbulence functions. Thon and Ghazanfarpour [TG01]

used the 2D N-S model for precomputing the horizontal velocity of river flow and Per-

lin’s turbulence functions for generating vertical surface perturbations. Jensen and Go-

lias [JG01] superimposed local shallow water waves onto the global water surface syn-

thesized by Fourier approach [Tes04]. Thürey et al. [TSS+07, TMFSG07] added small

scale details such as foam, bubbles and breaking waves to the shallow water model.

Cords [Cor07] combined low-resolution 3D SPH simulation for water volumes and

high-resolution 2D wave equation for surface waves.

Though these work shares a common spirit with our own models, the ideas outlined

here go beyond the previous findings in each of three scales. Moreover, among the above

methods, only [TG01] can handle river flow, but the method relies on a precomputed

numerical solution.

2.2 Stream Function

Fluid mechanics defines the stream function ψ for 2D incompressible flow in the xy

plane as the scalar function which the flow velocity (u,v) is the curl of, i.e., :

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.1)

The isovalues of ψ are known as streamlines of the flow, which are tangent to the ve-

locity field. Once we have the stream function values at any point in the flow, we can

compute the velocity from the equation above by using the finite differences approach.

The divergence-free property, i.e., the incompressibility, should be carefully consid-

ered when one want to generate a fluid-like velocity field. A nice property of the stream

function is that it always yields a divergence-free velocity field, since the divergence of

a curl is zero. Therefore, building velocity fields via stream functions is a way free of
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the consideration for the divergence-free, i.e., the incompressibility of fluids.

In computer graphics, some research work has used this property for constructing

a divergence-free vector field. Chenney [Che04] used flow tiles to store precomputed

stream function and construct a new velocity field by assembling these tiles. They pre-

sented an example of constructing a river flow, but the method can not get arbitrary

complex boundaries since it relies on precomputed tiles. Von Funck et al. [vFTS06]

constructed a velocity field for shape deformation from the co-gradient of a scaler field,

which is a similar idea with deriving velocity from stream function. Recently, Brid-

son et al. [BHN07] demonstrated how to modulate stream function for constructing a

velocity field conforming arbitrary boundaries. However, none of the above methods

aims at generating channel-confined flow with branchings and obstacles. We tackle this

problem in Chapter 3.

2.3 Dynamic Poisson Disk Distributions

A Poisson-disk distribution is a uniform point distribution in which the distance between

any two points does not violate a minimum distance criterion. There are many studies on

this topic. We refer the reader to [LD06] for a comprehensively survey. While previous

work attempted to generate a static point set, Vanderhaeghe et al. [VBTS07] presented

a dynamic Poisson-disk distribution algorithm in the context of stroke-based rendering,

where the points are dynamic and temporally coherent while maintaining a Poisson-

disk pattern. This algorithm generally includes three steps during each time frame: (1)

move points forapplication-related calculations, (2) reserve points that do not violate

minimum distance, and (3) insert new points in order to obtain a Poisson-disk pattern.

In [VBTS07], the last two steps rely on the dart-throwing algorithm [MF92] because it is

able to generate the Poisson-disk pattern incrementally. In indeed, it is possible to apply

other incremental algorithms, such as the boundary sampling algorithm [DH06], to this

problem. Note that the boundary sampling algorithm has the advantage of running at

linear time though the quality of distribution is not perfect. We adopt it as the base of

our adaptive dynamic sampling scheme (Sections 6.2.1 and 5.2.1).
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2.4 Texturing Methods

In this section we review two lines of texturing research that are directly related to our

work.

2.4.1 Sprite-Based Texturing

The ability to generate a large texture from a set of small texture samples is very use-

ful because it can achieve high resolution with low memory overhead. Sprite-based

texturing is one of the techniques used for this purpose. Neyret et al. [NHS02] in-

troduced the idea of simulating sprites living in texture space in order to account for

running drops on a curve surface. The update is achieved by sending to the GPU the list

of modified areas in the texture, so this is not adapted to the overall flowing of details

along the entire surface. Lefebvre and Neyret [LN03] proposed a scheme to dynami-

cally compose texture patterns on the GPU in order to emulate a high resolution detailed

texture. This method relies on an indirection grid which encodes the instance lying in

each cell together with its transform (offset, scaling, rotation). However, the sprites can-

not easily overlap, and their size should be constrained to the grid cell size. Lefebvre et

al. [LHN05] introduced a GPU-enhanced adaptive structure which is able to efficiently

manage overlapping sprites. Our texture composition scheme (Section 5.3) is inspired

by [LHN05].

2.4.2 Flow Guided Dynamic Texture

Generating a sequence of textures that conforms to the underlying flow while retain-

ing the texture properties is an effective way for enhancing details in fluid animation,

or for visualization. Max and Becker [MB95] proposed a texture advection technique

which advects texture coordinates and periodically resets the texture coordinates after

a predefined latency for avoiding excessive stretching. Neyret [Ney03] pointed out that

an optimal latency should be adaptive to local flow conditions and solves this issue by

blending several texture layers using different latencies. This method still suffer the

problems of destroying texture spectrum or not conforming to the flow in some cases.

For this, we propose a new texture advection method from the Lagrangian point of view

in Chapter 6. Recently, several methods based on texture synthesis have been proposed
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for texturing dynamic flow surfaces [BSM+06, KAK+07, NKL+07]. These methods

are computationally expensive, however, and are thus not suitable for real-time graph-

ics.

2.5 Summary

In this chapter we have reviewed existing methods for handling water animation. Physically-

based simulation of water is able to generate visually convincing results, but on current

hardware, it is normally limited to off-line graphics, or real-time graphics for small

domain. On the other hand, procedural methods are generally stable and fast, but no ex-

isting method targets rivers. Though some work has attempted to tackle the animation

of large bodies of water by mixing several models, none of them could handle real-time

animation of rivers. We also have introduced several existing techniques which have

the potential to be used in our models for river animation. In the next chapter we will

present our model in the macro-scale.

2.6 French Chapter Abstract

Dans ce chapitre, nous avons présenté les méthodes existantes d’animation de fluide.

Les méthodes de rendu physique proposent des animations plausibles, mais sur les ma-

chines actuelles, ces méthodes ne permettent pas d’obtenir un rendu temps réel, ou

seulement sur de petits domaines. Les méthodes de rendu procédurales sont généralement

stables et rapides, mais aucune méthode existante ne permet de créer le flux d’une rivière

complexe. Bien que des travaux précédents aient essayé de gérer l’animation de fluide

à large échelle en combinant différents modèles, aucun de ces travaux ne peut générer

des animations de rivières en temps réel. Nous avons également présenté plusieurs tech-

niques existantes qui peuvent potentiellement être utilisées dans nos modèles d’anima-

tion. Le chapitre suivant présente notre modèle pour l’échelle macro.
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Macro-Scale: Procedural River Flow

The flowing of water is the most salient visual characteristic of everyday rivers. Our

models for handling river surface features, which will be introduced in the following

chapters, all require knowledge of flow velocity. Thus, it is important to compute river

velocity for the purpose of realistic animation. Most of rivers in nature are turbulent

flow, and, as a result, have very complicated velocity fields. In our framework, river ve-

locity is decomposed into three scales. In the macro-scale, we assume the river flow as

a 2D potential flow whose velocity is generated by the method presented in this chapter.

In the meso-scale, we enrich the macro-scopic velocity by superposing local analytic

velocity fields representing individual perturbations. These local velocity fields are ad-

vected with the macroscopic velocity. In the micro-scale, we do not explicitly generate

velocity details. They are implicitly modeled by noise textures that are advected with

the velocity provided by larger scales.

Though the river velocity can be simulated with CFD models, this approach has

several disadvantages in the context of computer animation. First, the computation

time for numerical simulations is usually unaffordable for interactive applications. In

addition, numerical simulations usually compute and store data at a fixed resolution,

which is unreasonable for cases in which the camera is permitted to move freely in a

large scene. Furthermore, in many applications, the user wants to intuitively control the

visual features of rivers (e.g., main flow trajectory and qualitative flow speed). However,

it is difficult to control the numerical simulation results by setting the initial values and

the boundary conditions. Conversely, procedural methods can avoid these drawbacks.

In this chapter, we present a new procedural method for generating plausible river



20

velocity. The method is procedural because the velocity at any point is determined by

the distances from the point to local boundaries and a few intuitive control parame-

ters such as flow rates through channels. Though constructing fluid-like velocity fields

with procedural methods has been explored in the past [BHN07], no existing method

is able to generate a flow through a channel network with complex curved boundaries,

branchings and obstacles.

3.1 Overview

Our goal is to generate plausible river flow velocity on-the-fly. The rivers we will model

can be very large or even unbounded. They are described by channel networks where

branchings and obstacles may exist (Figure 3.1). The boundaries of the channels and

the obstacles are represented by curves. As for flow velocity, we are only interested

in 2D horizontal fields. The velocity field we want may not be physically accurate but

it should be visually convincing. This means that the flow should meet the following

criteria: (1) incompressible, (2) boundary conformed, and (3) flowing through channels

from source to sink.

Detail of junction A

Channels

Obstacle

A

Sink

Source

Figure 3.1: A river network.

As we mentioned in Section 2.2, there is a class of procedural methods that construct

fluid-like velocity fields by taking the curl of the stream function. The merit of this ap-

proach is that it always satisfies the incompressibility criterion given an arbitrary stream

function field. However, in order to meet the criteria (2) and (3) mentioned above, we

must provide a reasonable stream function. For conforming to boundaries, [BHN07]
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suggested ramping the stream function inside the influence region of a boundary to the

value at that boundary. But, it is not clear how to extend this method to construct ve-

locity fields for channel flow. We also found that this method has a flaw when treating

the areas impacted by more than one influence region (Figure 3.2). In this case, if we

still follow the method and simply modulate the stream function value according to the

nearest boundary, the stream function will be discontinuous at the medial axis of several

boundaries which take different boundary values. Artificially reducing the size of the

influence region could avoid this flaw, while it may lead to unnatural velocity patterns.

Obstacle A Obstacle B

Influence regions

dd
PψA ψB

Figure 3.2: A flaw of the curl noise method [BHN07]. Given a point P at the medial

axis of two close obstacles, we have ΨP
le f t = f (ψA,d), ΨP

right = f (ψB,d), where f is a

ramp function. If ψA 6= ψB, we have ΨP
le f t 6= ΨP

right . Thus the stream function ψ is not

continuous at the medial axis.

To bridge the gap described above, we propose a new stream-function based method

for generating procedural flow. We also derive the flow velocity with the curl of a stream

function ψ:

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (3.1)

where ψ is the stream function. In order to construct a reasonable stream function field,

we resort to an inverse distance weighted interpolation approach. The idea is inspired by

two observations: first, the stream function at channel boundaries can be determined by

the flow rates through the channels; and second, the interpolant of the inverse-distance

weighted interpolation scheme is very similar to the solution of the Laplace’s equation.

Note that the Laplace’s equation is exactly the governing equation of the 2D incompress-

ible irrotational flow. Though river flow in nature is not irrotational flow, the difference
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between them can be neglected in the context of macro-scale models.

3.2 Stream Function for Channel Flow

In this section, we describe a method for constructing a reasonable stream function field

for a channel-confined flow with branchings and obstacles. We first introduce how to

determine the stream function values at boundaries, and then describe an interpolation

scheme for calculating the values inside the flow domain. Finally, we describe how to

handle obstacles.

3.2.1 Boundary Values

An important characteristic of the stream function ψ is that the volume flow rate be-

tween any two points in a flow field is equal to the numerical difference in ψ between

those points. The proof can be found in any Fluid Mechanics textbooks such as [Whi01].

Based on this relationship, the stream function value at a boundary should be constant

because there is no flow through solid surfaces. Similarly, any two connected bound-

aries should take the same boundary value. Furthermore, by taking the two points on

the two boundaries of a channel respectively, we have

Q = ψL −ψR, (3.2)

where Q is the volume flow rate through the channel and ψL and ψR are stream function

values respectively on the left and right boundary looking downstream of the channel

(Figure 3.3).

Now let’s analyze the case in a river network. First, we merge each pair of connected

boundaries at junctions, because they should take the same stream function value (Fig-

ure 3.4). Supposing that a river network has n channels and m junctions, we will have

n−m +1 unknown boundary values after merging connected boundaries. From Equa-

tion 3.2, we can obtain n equations for the channels. Considering the conservation of

Q at junctions, in fact we only have n−m independent equations. Therefore, given

one of the boundary values, we can solve all the others. In practice, we can set one of

the boundary values to an arbitrary value since the velocity only relates to the partial
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Left boundary

Right boundary

ψL

ψR

Q

Figure 3.3: Stream function values ψ on channel boundaries relate to the volume flow

rate Q by: Q = ψL −ψR.

derivatives of the stream function.

Merging

Merging

Merging

Figure 3.4: To ease the calculation of boundary values, we merge the connected bound-

aries at each junction. Left: there are six boundaries before the merging. Right: Three

boundaries left after the merging.

The flow directions and the volume flow rates Q must be determined before apply-

ing the above method. Such information is usually available in a hydro database. In

some applications, we can also see them as the parameters for controlling the anima-

tion. To do this, we note that the flow rates must satisfy the rule of volume balance at the

junctions. In the following, we introduce a method for estimating flow rates that satisfy

this constraint. We assume that there is only one downstream channel at each junction,

which is a common assumption in Hydrology. Thus the volume balance equation at any

junction is given as

Qd = ∑
i

Qui
(3.3)

where subscript d denotes downstream and u denotes upstream. We also assume that

the volume flow rate through each channel upstream the junction is proportional to the
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width of that channel:

Qui
=

wui

∑ j wu j

Qd (3.4)

where w is channel width. Now if we set the volume flow rate of the most downstream

channel and then perform an upstream traversal with applying Equation 3.4, we can get

Q for all other channels.

3.2.2 Interpolation Scheme

Once the boundary values have been determined, the next task is to construct a reason-

able stream function ψ inside the flow field. We resort to an interpolation method where

the assumption is that the interpolated values should be influenced more by nearby

boundaries and less by more distant boundaries. Thus our method can be viewed as a

variant of Shepard’s method (i.e., inverse distance weighted interpolation method) [She68]

originally proposed for the interpolation of scatter points. As we stated before, an in-

teresting feature of Shepard’s method is that the resulting interpolant is similar with the

class of harmonic functions [GW78]. Recall that the governing equation with a single

unknown variable ψ for a 2D irrotational flow is the Laplace equation. This explains

why our method can generate plausible flow.

By replacing the distance to points with the distance to curves, the simplest version

of the Shepard method has been adapted in [KKN+89] for contour interpolation:

hs =
∑i hi/di

∑i 1/di

, (3.5)

where hs is the value at the sample point Ps, hi is the value of the ith contour, and di is

the distance from Ps to the ith contour. The problem of contour interpolation is similar

to ours. However, their scheme is not sufficient for us. First, we wish to query distances

only in local regions, for performance reasons. Second, in order to imitate different

boundary conditions, we need handles for controlling the gradient of the interpolated

values.

Our interpolation scheme can be described as follows. Given a point P, let di be the

distance from P to the boundary Bi on which the stream function value is ψi (Figure 3.5).
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The interpolated stream function value is

ψ(P) =
∑i w(di)ψi

∑i w(di)
. (3.6)

Here we define the weighting factor w as

w(d) =







d−p · f (1−d/s), if 0 < d ≤ s,

0, if s < d,
(3.7)

where s is the influence size of boundaries, p is a positive real number and f is defined

as

f (t) = 6t5−15t4 +10t3. (3.8)

Notice that the function ψ(P) is Lipschitz continuous and limP→Bi
ψ(P) = ψi.

B1

B2

B3

d1

d1

d2

d2

d3

Figure 3.5: Distances to boundaries are used for interpolating the stream function.

Given a point, only the boundaries that intersect with the circular search region are

considered.

In Equation 3.7, for performance reasons we consider the influence size of bound-

aries s. Thus for a point in question P, we only need to query the boundaries which

intersect with the circular search region of radius s around P (Figure 3.5). The bound-

aries outside of this region have zero weighting and may be excluded without effect.

On the other hand, our experiments demonstrated that, for generating plausible chan-

nel flow, we should guarantee that any point in the flow is influenced by at least two
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boundaries. Thus, s should be larger than the river width and indeed even larger so that

branching regions are correctly interpolated. It can be set as a constant adapted to the

worst case. However, for efficiency it is better to adapt it to the river width.

The power of distance p in Equation 3.7 is an important parameter for controlling

the gradient of ψ . In the context of scattered data interpolation, [GW78] gave a proof

that the resulting interpolant of Shepard’s method has zero gradient at every data point

when p > 1 and is not differentiable when 0 < p ≤ 1. Following that proof, we can get

a similar result for ψ(P). If p > 1,

lim
P→Bi

∂ψ(P)

∂di

= 0, (3.9)

and if 0 < p ≤ 1, the partial derivative fails to exist at boundaries. Thus we can take

p > 1 for imitating no-slip boundary, and 0 < p ≤ 1 for slip boundary.

3.2.3 Handling Obstacles

In this section we discuss the way in which obstacles are treated. Regarding the in-

terpolation of the stream function, the boundaries of obstacles are not different from

the boundaries of channels. Thus we simply need to include both the boundaries of

obstacles and those of channels in Equation 3.6. Certainly, we need to determine the

boundary values of obstacles before interpolating. Let Ci be the center of an obstacle

Oi. We compute the stream function ψ(Ci) by Equation 3.6 using only the boundaries

of channels. Then we use ψ(Ti) as an estimation of the boundary value of Oi.

In the weighting function Equation 3.7, we can assign independent influence size s

for each obstacle. Thus we can make the velocity pattern around an obstacle adaptive

to its size. Note that, in such cases, the search radius for the point in question should be

the maximum s.

3.3 Implementation Details

Since our interpolation method relies heavily on the distance to boundaries, we need an

efficient method for computing these distances. We achieve this by incorporating our

velocity generation method into a tiling based terrain system such as [Bru08].
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When a new terrain tile is created at run time, we associate it with a hydro tile which

contains data structures for accelerating distance calculation. The concept of distance

fields [FPRJ00] is a common data structure for this purpose. However, obtaining a

single shortest distance to nearby boundaries is not enough for our interpolation scheme.

For interpolating, we need to know several shortest distances respectively to different

boundary curves that are characterized by their different boundary values (Figure 3.5).

Thus, building a single distance field as [FPRJ00] is complicated and generally too

expensive in the context of the real-time generation of hydro tiles. Instead, we build

a quadtree in each hydro tile to store the segments of boundary curves which intersect

with the tile (Figure 3.6). We construct the quadtree with a top-down approach. Cells are

recursively subdivided if the number of segments inside cells is larger than a threshold.

During distance queries for a given point, the segment quadtree allows us to exclude

segments which do not intersect with the search region of the query point, thus fast

distance calculation is possible.

Terrain tiles

Hydro tile

Figure 3.6: Terrain tiles and a hydro tile. We associate a hydro tile to a newly created

terrain tile. In the hydro tile, a quadtree that stores the segments of boundary curves is

constructed for accelerating distance calculation.

When moving obstacles are considered, we prefer to use an independent data struc-

ture for each obstacle. Thus we can avoid frequently updating the segment quadtree. For

obstacles which can be approximated by simple shapes, we may use analytic methods

to calculate distances. Otherwise, we can build a local adaptive distance field [FPRJ00]

for each obstacle.
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3.4 Results

To validate our method, we compared the streamlines generated by our method against

the ones generated by a potential flow solver (Figure 3.7). The similarity between the

two results shows that our method is a reasonable approximation. Figure 3.8 demon-

strates that slip and no-slip boundary conditions can be simulated by using various dis-

tance power p.

Figure 3.7: The streamlines of a flow past obstacles and through a junction. Left: Gen-

erated by our procedural method with distance power p = 1.0. Right: Generated by the

potential flow solver in OpenFOAM [Ope08], a CFD software.

Figure 3.8: Velocity profiles generated by our method. Slip and no-slip boundary con-

ditions can be simulated with p = 0.9 (left) or p = 1.2 (right), respectively.

To demonstrate the performance and robustness of our method, we applied it to a

terrain application by combining the technique of waves sprites introduced in Chapter 5.



29

In the application, the procedural velocity was used for advecting water waves and float-

ing objects. Figure 5.7 shows that the timing cost of our method (labeled with particles

advection) holds a small portion of each animation step. Figure 3.9 shows several veloc-

ity fields generated by our method in some special or complicated cases. The visually

convincing results demonstrate that our method is robust. In the accompanying video 1,

we show that our method is fast enough to support on-the-fly river editing, e.g., moving

boundaries.

d

(a) Flow in two close channels (b) Flow past a complex junction

breakup

(c) Flow past multi-islands (d) Flow past floating boxes

Figure 3.9: Surface velocity vector plots from our method. It demonstrates that our

method can yield visually convincing velocity fields even in various complicated cases.

1Available at http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/
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3.5 Discussion

3.5.1 2D Flow Hypothesis and Terrain Slope

Our 2D flow hypothesis is valid for constant water depth (and homogeneous velocity

profile along each water column). To account for depth h(x,y) variations we should

simply consider q(x,y) = v(x,y)h(x,y) instead of v in our derivation: ∇ ·q = 0. Simi-

larly, we will have q = ∇×ψ . This means if we know the water depth h, we can get

the velocity from v = q/h. In a steady flow, the Chézy formula provides a convenient

approximation : v = C
√

Rs with C the Chézy constant, s the slope, v = Q/S the average

velocity in a vertical section of surface S, perimeter P, and hydraulic radius R = S/P.

Assuming the section has a known shape, e.g., a rectangle of known length l and height

h, this yields h as a function of s, l,Q.

3.5.2 Unbounded or Dynamic Scenes

The fact that we can efficiently recompute the acceleration structure for distance compu-

tations yields various advantages. First, it allows our model to fit in a precomputation-

free environment where visible tiles are generated on demand. This is a key condition to

make our model amenable to very large terrains. Second, we can deal with interactive

changes, including falling objects, or moving obstacles. Third, this property could make

it possible to deal with flows with moving boundaries, such as flooding rivers, mud or

lava flows.

3.6 Summary

In this chapter we have described a new stream-function based procedural method ca-

pable of calculating the flow velocity for rivers with branchings and obstacles. The

method is stable and fast and is thus ready for real-time applications. Armed with tiling

approaches, our method can be applied to a very large scene and even an unbounded

scene. Furthermore, due to proceduralism, the result of our method can be intuitively

modulated by users. In the next chapter, we turn to the study of meso-scale phenomena.
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3.7 French Chapter Abstract

Dans ce chapitre, nous avons décrit une nouvelle méthode procédurale basée sur une

fonction de flux, permettant de calculer la vitesse du courant pour des rivières en tenant

compte des embranchements et des obstacles. Cette méthode est stable et rapide et elle

peut donc être utilisée pour du temps réel. Utilisé conjointement avec des approches par

tuile (tile), notre méthode peut gérer de très grandes scènes voire des scènes illimitées.

De plus, du fait qu’elle soit procédurale, le résultat peut être facilement contrôlé par

l’utilisateur. Dans le chapitre suivant, nous étudions les phénomènes de l’échelle méso,

plus précisément les vagues stationnaires formées par des obstacles.
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Chapter 4

Meso-Scale:

Feature-Based Vector Simulation

This chapter focuses on simulating the local and structured waves on river surfaces

which we classify as problems in the meso-scale (Figure 1.2). To better understand the

challenges we face, let us first recall the global constraints imposed on this thesis work.

First, the phenomena to be simulated happen in a large virtual scene, which requires

good scalability of the solution. Second, we aim at real-time applications. Finally, the

simulation model should provide intuitional handles for users to control the shape or

appearance of the target wave phenomenon.

We choose a typical meso-scale phenomenon shown in Figure 4.1 as our case study.

In a quasi-steady running stream, a stationary obstacle often generates a peculiar quasi-

stationary wave pattern. The local water surface shows a regular and nearly sinusoidal

shape, and the wave crests remain nearly in the same places, only with a little oscillating

caused by small perturbations. Since this phenomenon is common in everyday streams,

simulating it in a computer-generated virtual environment is very much desired.

Simulating the waves arising from obstacles is challenging. Relying on traditional

CFD techniques to simulate this phenomenon requires very high-resolution discretiza-

tion and thus can be prohibitively expensive to compute. It is even worth considering

wide scenes such as long rivers. Instead, a phenomenological method, proposed by

Neyret and Praizelin [NP01], can simulate the vector features (crest curves) of this kind

of wave efficiently without numerical simulation. However, the results given in [NP01]

are only schematic curves. An unsolved problem is how to construct water surfaces
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Figure 4.1: Quasi-stationary wave patterns caused by obstacles in a running stream.

Left: Note the wave upstream of a stone in the middle, and the ripples triggered upstream

of it. Millimetric surface details are visible. Right: Intersection of the waves.

from the vector features for the rendering purpose. On the other hand, there is room for

improving this method in terms of both robustness and performance.

In this chapter, we propose a feature-based vector simulation approach, and use it to

simulate the waves caused by obstacles. The basic idea is to separate the representation

for animation and rendering. Following the spirit of [NP01], we use a dynamic vector

representation to capture the geometric features and the motion behavior of the target

waves (Section 4.1). The concise vector representation allows low cost computation

and provides good controllability. For rendering, we convert the vector information to a

high resolution representation which is suitable for high-quality rendering (Section 4.2).

Finally we superimpose the waves on the underlying mean flow which can be simulated

by existing methods like shallow water model [Wu04] with relatively low resolution.

4.1 The Improved Phenomenological Model

In this section, we present our wave model for generating the geometric features of the

quasi-stationary waves caused by obstacles. Given a horizontal flow velocity field and a

depth field, the model is expected to output the vector features of the target waves. Note

that the input fields could be much coarser than the resolution of wave details that we

want to render. Since our model is mostly based on Neyret and Praizelin’s work [NP01],
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we first briefly review their method in Section 4.1.1. Then we detail our improvements

in Section 4.1.2.

4.1.1 Review of Neyret and Praizelin’s Method

Neyret and Praizelin’s method assumes that the predominant wave caused by an obstacle

in a shallow stream can be approximated by the shallow water theory [Sto57, page 22],

which suggests that its wave speed is independent of its wavelength:

|c| =
√

gh, (4.1)

where g is the gravitational acceleration and h is the local water depth. Using the anal-

ogy of the shallow water theory with compressible gas dynamics, the target wave is

called shockwave in [NP01]. In addition, Neyret and Praizelin’s method assumes that

the shockwave triggers a series of ripples upstream of it. Figure 4.2 gives a schematic

illustration of these assumptions.

Onset

Figure 4.2: Neyret and Praizelin’s method [NP01] assumes that the waves made by an

obstacle is composed of a predominant shockwave and a series of ripples.

Neyret and Praizelin’s method is derived by analyzing the geometric properties of

the shockwave (Figure 4.3). First, in a running stream, a wave can be stationary provided

the wave speed

|c| = |v|cosα, (4.2)
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where v is the local flow velocity and α is the propagation angle of the wave relative to

the upstream direction. Therefore, the crest of a shockwave should lie at an angle

α = arccos

√
gh

|v| (4.3)

to the upstream direction. Next, let us examine where the most upstream point, the

starting point, of a shockwave locate. At the starting point, the wave crest should be

orthogonal to v, i.e., α = 0. Substituting it into Equation 4.3, we get |v| =
√

gh. To

facilitate further discussion, we remind the Froude number:

Fr =
|v|√
gh

. (4.4)

A supercritical flow (Fr > 1) past an obstacle yields a subcritical area (Fr < 1) in front

of the obstacle. This means we can expect to find a starting point at the boundary of

transition (Fr = 1) in front of an obstacle 1.

Fr > 1
Fr > 1

Fr < 1
isoFr=1

Starting point

Obstacle

v

v

α
Shockwave crest

Figure 4.3: Illustration of Neyret and Praizelin’s method [NP01] for simulating the

waves in front of obstacles in a running stream.

Based on the above analysis, the algorithm for constructing a shockwave crest can

be summarized as follows:

- Construct an isoFr=1 curve immediately upstream of an obstacle.

1As stated in [NP01], it is also possible to find the starting point downstream of an obstacle where

Fr = 1. For clarity, we only consider the upstream case in this work, but the downstream case is mostly

identical.
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- Find the shockwave starting point on the isoFr=1 curve with the criterion of v ⊥
isoFr=1.

- Construct the shockwave crest by iteratively creating line segments according to

Equation 4.3.

For accounting for animation, a quasi-stationary velocity field is constructed follow-

ing the sprit of [WH91]. First, a stationary velocity field vs is precomputed by solving

the Laplace equation on a 2D grid with the finite difference method. Next, the velocity

fields of local perturbations vpi
are superimposed on the stationary velocity field:

v = vs +∑
i

vpi
. (4.5)

For example, vpi
can be a sink or a source with a small radius. Note that these perturba-

tions should be advected with the stationary flow vs.

Since the velocity field v is time-varying, isoFr=1 curves and shockwave starting

points need to be updated at each time step. Certainly, simply generating new shock-

waves from new starting points at each time step would not yield a visually convincing

result. It will lead to an instant global change of a whole wave, but in fact the per-

turbation information should not travel along the whole wave at once. For accounting

this propagation, Neyret and Praizelin’s method achieves the animation by updating the

vertices of an existing shockwave (a segment list). It updates the position of the vertices

not only according to local velocity variations but also according to the perturbations

gradually propagated from upstream vertices.

4.1.2 Our Improvements

In order to increase performance and robustness, we improve Neyret and Praizelin’s

method as follows.

Updating Shockwave Starting Points

Neyret and Praizelin’s method generates new isoFr=1 lines at each time step, which has

several drawbacks. An abrupt velocity perturbation might occasionally lead to a discon-

tinuity of an isoFr=1 line which will result in the popping of the corresponding shock-

wave. Furthermore, reconstructing isoFr=1 at each simulation step is time-consuming.
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For obtaining better robustness and higher efficiency, we construct an isoFr=1 line

only once, and directly update the shockwave starting point according to local velocity

perturbations. For each shockwave starting point x, we store its initial location x0 and

a local steady velocity gradient dv0 = ∇|vs(x0)|. As shown in Figure 4.4, at each time

step we update x with an offset λ from x0 along the direction dv0:

x = x0 +λ
dv0

|dv0|
, (4.6)

to ensure |v(x)| = |c|, i.e., Fr = 1. Now our goal is to solve λ at each time step. Using

linear approximation, we can estimate stationary flow velocity vs(x) with

vs(x) ≈ vs(x0)+λdv0. (4.7)

In addition, we assume that only the nearest perturbation vd has a significant influence

on the position of a shockwave starting point. Substituting Equations 4.6 and 4.7 in

Equation 4.5 yields

|v(x)|= |vs(x0)+λdv0 +vp(x0 +λ
dv0

|dv0|
)| = |c| (4.8)

Finally, we solve the above equation for λ by using a simple iterative scheme.

|v|

dv0

|dv0|

x x0λ|c|

|vs||vd|

x

x0

dv0

isoFr=1

Perturbation

Obstacle

Figure 4.4: Updating a shockwave starting point x from its initial value x0 in the vicinity

of a perturbation.
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Tracing Shockwaves

Once having obtained a shockwave starting point, Neyret and Praizelin’s method con-

structs a corresponding segment list which represents a shockwave by making use of

Equation 4.3. However, this Eulerian scheme is not well suitable for animation, be-

cause it makes the propagation of perturbations along a segment list complicated and

unstable. Instead, we rely on a Lagrangian representation which is more suitable for

advecting physical quantity.

Before detailing our method, let us first investigate the motion of the elements of

a shockwave (Figure 4.5). In a running stream, waves not only propagate at the wave

velocity c but also advect with the current of velocity v. Hence the resultant velocity of

a wave element is the vector sum of the two velocities:

ve = v+ c. (4.9)

Equation 4.2 tells us that the component |v|cosα of stream velocity at right angles to

the crest cancels the crest’s motion at the wave speed |c|. Thus we have

|ve| = |v|sinα =
√

|v|2 −|c|2, (4.10)

and ve is tangent to the wave crest.

Wave crest

α

c ve

v

Figure 4.5: The velocity of a wave element ve is the vector sum of the wave velocity

c and the stream velocity v. Here the wave crest propagates at the angle of α to the

upstream direction.

Our method uses particles to represent the wave elements discussed above. At each
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time step, we generate two new particles respectively at the two sides of a shockwave

starting point and update all existing particles with ve. In addition, in order to imitate

the attenuation of wave energy, we associate an intensity value to each particle. The

intensity value starts from 1 and linearly decrease to 0 in a given time period. We kill a

particle once its intensity value vanishes. Finally, connecting existing particles with line

segments gives us a shockwave crest (Figure4.6).

Shockwave crest

Particle
isoFr=1

Starting point

Obstacle

Figure 4.6: Using particles to trace the trajectory of a shockwave.

4.2 Efficient High Quality Rendering of Waves

We next turn to the problem of rendering a water surface on which the quasi-stationary

waves caused by obstacles are present. We aim at quality rendering with minimum

memory and computation cost. In real-time graphics, the surface of a large body of

water is often represented by a height field. However, this regular grid representation

is not optimal in our case. On one hand, the wave phenomenon we focus on is local,

i.e., it appears only at some specific locations but not everywhere in the flow domain.

Therefore, a wanted representation scheme should be adaptive, i.e., use higher resolu-

tion at wave locations and lower resolution elsewhere. On the other hand, as shown in

Figure 4.7, using a mesh aligned with a feature line is preferable than using a regular

grid for reducing geometric aliasing and normal noise [BK01].

To overcome these drawbacks, we propose an adaptive representation scheme by ex-

ploiting the vector wave information that results from our simulation model. We model

the water surface by superposing wave surfaces on a mean water surface (Figure 4.8).
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As has been stated in Section 1.2, the mean water surface should be handled in the

macro-scale of our framework. Therefore, we treat it as known in the present section.

The mean water surface can be represented by a coarse mesh or height field. Each wave

surface is then represented by a fine mesh strip aligned to the feature curve of the corre-

sponding wave. In the next subsection, we present how to construct these wave surfaces

and superimpose them on the mean water surface. Then we treat wave intersection in

Section 4.2.2.

| |
vs|

Figure 4.7: Comparison of the rendering results obtained with different meshing

scheme. Left: Using a regular grid over the domain, quads as thin as a narrow fea-

ture can still generate very distracting geometric aliasing. Middle: The sampling rate

should be even greater, given by Shannon’s theorem. Right: Using a mesh aligned with

the feature line prevents geometric aliasing with fewer quads.

Mean water surface

Wave surface

Obstacle

Flow

Figure 4.8: A river surface is modeled by superposing wave surfaces on a base (mean)

water surface.

4.2.1 Constructing Wave Surfaces along Shockwave Crests

The waves caused by an obstacle in the flow consist of a dominating shockwave and

a train of parasitic ripples upstream of it. To construct the surface, in theory we need
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Obstacle

Water flow

Profile z

T N

B

Width w

Base curve C

Obstacle

u

v

Figure 4.9: Left: Our custom wave profile z(x) defined in Equation 4.16. Right: Sweep-

ing the profile curve along a base curve (a shockwave crest) forms a wave surface.

to simulate the crests, profiles and amplitudes of both the shockwave and the ripples.

However, what we can obtain now from the simulation model introduced in the previous

section is only the shockwave crests. Fortunately, one important feature of the wave

pattern we target is that all the wave crests are nearly regular and parallel. Therefore, it is

reasonable to assume that the wave surface to be constructed is the resultant of sweeping

a profile curve along a shockwave crest (Figure 4.9). Here, the profile curve represents

the superposition of one shockwave and a series of ripples. With this assumption, we

are able to define the wave surface based on simulated shockwave crests and user given

profile curves.

We formulate the surface definition as follows. The sweeping operation uses a

shockwave crest as its base curve C(u). Let 〈T,B,N〉 be a local frame moving along the

base curve, with T the unit tangent to the base curve, N the normal of the mean water

surface, and B = T×N. Given a normalized wave profile z(v), a wave amplitude func-

tion a(u) and a wave width function w(u), we define the parameterized wave surface

as:

S(u,v) = Sb(x(u,v))+a(u) · z(v) ·N, (4.11)

where Sb is the base water surface and

x(u,v) = C(u)+ v ·w ·B. (4.12)
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If we neglect the derivative of amplitude a(u), the surface normal can be calculated by

Nw(u,v) = − a

w

∂ z

∂v
B+N renormalized. (4.13)

Note that this formula allows us to compute normals efficiently by using pre-computed

derivatives of the wave profile z.

Our goal now is to tessellate the parameterized wave surface, S(u,v), to get a mesh

strip that is able to minimize the geometric aliasing. As suggested in [BK01], an ef-

fective way to achieve this is to construct a quad mesh whose edges are aligned to

iso-parameter lines (Figure 4.10). We build the quad mesh in two steps. First, we create

rib curves uniformly sampled along the base curve. Meanwhile, we let the rib curves

be orthogonal to the base curve. Note that the rib curves may intersect each other when

the curvature radius of the base curve is less than w/2. In this case, we relax the the

requirements of orthogonality. Second, we uniformly sample on the rib curves to create

lines in another parameterization direction, i.e., , v direction. The sampling density is

controlled by the LOD scheme that will be introduced in Section 4.3.2.

Rib

Base curve

v

u

Figure 4.10: Wave surface is sampled by a quad mesh aligned with iso-parameter lines

for reducing normal noise.

Once having tessellated the wave surfaces, we need to apply the mesh strips upon

the mesh of the mean water surface. Drawing them separately would not give a cor-

rect result, since wave surfaces may have negative offset from the mean water surface

(Figure 4.8). The mesh-stitching technique described in [L.P00] may work for merging

these meshes. However, this method requires remeshing the two surfaces to be merged.

Since the waves are dynamic, the remeshing would have to be done in each frame. It

is not only computationally expensive but also leads to an extra time cost for uploading
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the new surface data to the GPU memory.

To avoid remeshing the mean water surface, we solve the mesh composing problem

by using the stencil buffer found on graphics hardware. We first draw all wave surfaces

into not only a color buffer but also a stencil buffer. The stencil buffer is able to indicate

which fragments are covered by the wave surfaces. Then we draw the mean water

surface into the color buffer where the wave surfaces are not present. By using this

method, we do not need to modify the mean water surface. Still, we need to ensure

a perfect continuity between the wave surface and the base water surface. When the

boundary of a wave surface intersects with the edges of the mean water surface mesh,

geometry gaps may appear. To avoid this, we insert extra ribs by interpolation as shown

in Figure 4.11.

Figure 4.11: Left: Mean water surface mesh (dashed) and original mesh strip (plain).

Boundary edges like AB, CD and DE must be split because they intersect with the edges

of the mean water surface mesh. Right: The mesh strip with added extra ribs (red dashed

liens) by interpolating.

4.2.2 Handling Wave Intersection

When two obstacles are close, the stationary waves may intersect (Figure 4.1). At the

intersection part, waves caused by different obstacles are superposed. Simply drawing

two wave surfaces without handling the intersection will lead to an un-smooth result

(Figure 4.12a), and can not account for the addition of amplitudes. To properly super-

pose waves, we construct a dedicated mesh patch for the intersection part. Suppose

that two wave surfaces S1(u1,v1) and S2(u2,v2) intersect as shown in Figure 4.13. The
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(a) (b) (c)

Figure 4.12: The intersection of two wave patterns. (a) A simple Z-buffer rendering

without handling crossing. (b) We generate a dedicated mesh patch for the intersection

part. (c) Final rendering with a proper intersection treatment.

superposed surface of the intersection part is defined by:

S(u1,u2,v1,v2) = S1(u1,v1)+S2(u2,v2)−Sb(u1,u2). (4.14)

The surface normal can be calculated by:

Nw(u1,u2,v1,v2) = − a1

w1

∂ z

∂v
(v1) ·T2 +

a2

w2

∂ z

∂v
(v2) ·T1 +B1 ×B2 renormalized.

(4.15)

We tessellate the intersection part with a structured grid aligned with the grid lines of

S1 and S2. Moreover, we need to cut out this intersection part in both S1 and S2.

4.3 Implementation details

4.3.1 Wave Profile

The choice of the wave profile z(x) is up to users except the constraint: z(x) = z′(x) =

z′′(x) = 0 at the two ends to ensure G2 continuity between the wave surface and the base

water surface. In our implementation, we used the normalized wave profile illustrated

in Figure 4.9. It is defined as the sum of a gravity wave profile zg(x) and a capillary
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T2

Figure 4.13: For handling wave intersection, we cut out this part in the two intersected

mesh, and create a dedicated mesh patch (bounded by red dashed lines). strips.

wave profile zc(x) inspired by [FM98]:

z(x) = zg(x)+ zc(x), x ∈ [−1..1], (4.16)

where

zg(x) = 2(3x+
1√
2
)e

−(3x+ 1√
2
)2

, (4.17)

and

zc(x) =







.045(e−2x cos(24πx)−1− x(e−2 cos(24π)−1)), x ≥ 0,

0, x < 0.
(4.18)

4.3.2 Bump-mapping and LOD

Defining a wave surface by sweeping allows us to calculate accurate surface normals

efficiently. We always determine per-pixel normals through the analytical bump com-

puted from Equations 4.13 and 4.15. Problems may occur when we should filter the

bumps themselves, i.e., when the sampling frequency (i.e. pixel size) is smaller than

the frequency of waves. As predicted by Shannon’s theorem, this yields aliasing. In

practice, this occurs (for the capillary wave component of the profile (Equation 4.16).

So, these high frequency waves must be properly filtered. We progressively fade the
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capillary ripples according to the view distance d. We rewrite Equation 4.16 to:

z(x) = zg(x)+β zc(x), (4.19)

where β decreases from 1 to 0 as d increases. The filtered geometric information should

be accounted for in the illumination model, which is a general and tough problem. We

leave it as future work.

To ensure good performance, we determine the resolution of wave mesh strips ac-

cording to the view distance d. We set the level of subdivision of a wave surface in the

direction u as ⌊log2((1−δ )Nmax)⌋, with Nmax the maximum number of grid lines, and

δ =



















0, d ≤ dnear,

d−dnear

d f ar−dnear
, dnear < d < d f ar,

1, d ≥ d f ar.

(4.20)

where dnear and d f ar correspond to the finest and the coarsest LOD, respectively.

4.3.3 Shading Model

For realistic rendering of water surfaces, we rely on existing GPU techniques. We con-

sider reflection (global and local, with Fresnel term) and refraction effects. Local re-

flection and refraction are achieved by projecting reflection and refraction maps onto

the water surface [AVO02]. A cube map is used to account for global environment

(e.g., sky) where the projective texture does not provide pixels of close objects. Finally,

we combine those colors in the pixel shader using a Fresnel term.

4.4 Results

We benched our method on a scene containing 35m long 3m wide river. All tests were

done on an AMD Athlon 3000+ at 1.8Ghz with an NVIDIA GeForce 8800GTS.

Figure 4.14 shows very detailed waves generated by our method in real-time. The

wave phenomenon we target is only one of many kinds of waves on river surfaces.

Therefore, mixing our model with other wave models is necessary in real applications.
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Figure 4.15 demonstrates that our method is well compatible with other wave models

using bump mapping. Figure 4.16 shows waves disturbed by floating waves. Please

consult the accompanying video to see more animation results 2.

Figure 4.14: High resolution waves simulated in real-time.

To demonstrate the performance of our method, we tested it with various view dis-

tances (Figure 4.17). The simulation time includes two main parts: generating dynamic

shockwave crests and constructing wave surface meshes. Table 4.4 demonstrates that

our method is applicable for real-time applications.

2Available at http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/
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curve

(a) (b)

Obstacle

(c) (d)

Figure 4.15: Results of superimposing noise waves (a)(b)(c) and boils (d) on our waves

by using bump mapping.

4.5 Summary

In this chapter, we have proposed a feature-based vector simulation approach for simu-

lating local and structured waves in streams. We have chosen a typical meso-scale phe-

nomenon: stationary waves caused by obstacles as a case study. For better performance

and robustness, we have improved the phenomenological model proposed in [NP01] in

two aspects: updating shockwave starting points according to local velocity perturba-

tions and using particles to trace a shockwave crest (Section 4.1.2). For efficient and

quality rendering, we have presented a method that is able to construct an adaptive and

feature-aligned surface meshes according to the simulated vector features (Section 4.2).
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Frame 20 Frame 40

Obstacle

Frame 60 Frame 80

Figure 4.16: Waves disturbed by floating leaves. We obtain the quasi-stationary velocity

field by superimposing small local velocity fields attached to the leaves on a stationary

velocity field.

The results show that our approach permits high animation and rendering quality at

cheap simulation cost. It also allows users to intuitionally control the animation, for

example the shape of waves (Section 4.3.1). In the next two chapters we turn to handle

micro-scale surface features of rivers with texturing methods.

4.6 French Chapter Abstract

Dans ce chapitre, nous avons présenté un phénomène représentatif de l’échelle méso :

les vagues stationnaires formées par des obstacles. Nous poursuivons l’idée présentée
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(a) Far view.

(b) Middle view.

(c) Close view.

Figure 4.17: Typical views considered in our performance test.
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near view middle view far view

shockwave crests 2.5 2.5 2.5

wave meshes 12 13 17

Table 4.1: Performance for wave simulation (unit: ms/frame)

dans [NP01], cherchant à simuler les caractéristiques géométriques des vagues. Afin

d’obtenir de meilleurs performances ainsi qu’une meilleure robustesse, nous avons amélioré

le modèle phénoménologique d’onde de choc proposé dans [NP01] de deux manières :

en actualisant le point de départ des ondes de chocs en fonction des perturbations lo-

cales de la vitesse et en utilisant des particules pour dessiner la trajectoire des ondes

de chocs (Section 4.1.2). Afin d’obtenir un rendu correct et efficace, nous avons intro-

duit une méthode permettant de générer de manière adaptative la surface de l’eau par

des maillages, en fonction de la trajectoire des vagues simulées (Section 4.2). Cette

méthode permet de découpler la résolution utilisée pour la simulation de la résolution

utilisée pour le rendu. Cela permet également de pouvoir contrôler aisément les ca-

ractéristiques de l’animation, comme la forme des vagues par exemple (Section 4.3.1).

Dans les deux prochains chapitres, nous présentons les moyens utilisés pour gérer les

caractéristiques de la surface des rivières à l’échelle micro avec différentes méthodes de

texturage.



Chapter 5

Micro-Scale: Wave Sprites

This chapter and the next chapter are dedicated to handling the micro-scale visual phe-

nomena of river surfaces. These phenomena include various small scale surface details

such as waves and foams. Modeling these dynamic details are challenging because they

often have complicated or even unknown physics causes. It is worse when we are un-

der the constraints of real-time and large domain. Though there exist statistic-based

methods or procedural methods for simulating small waves in deep water, they fail to

simulate the advection of waves caused by the surface flow. Note that the advection of

surface details is a distinct surface characteristic of rivers. Since these surface details

often have similarity both in space and in time, we can consider the technique of tex-

turing. To account for the advection, what we need is a method for generating texture

sequences that can follow a given flow while preserving given statistic properties such

as spectrum.

In the context of real-time graphics, the Eulerain texture advection methods pro-

posed in [MB95, Ney03] have a similar purpose to ours. However, it is not clear how to

extend them to be scalable for a very large domain. Apart from the scalability, they are

not perfect in terms of spectrum preserving (which we will detail in the next chapter).

To address the two issues, we explore the problem of advecting texture from the La-

grangian point of view in the following two chapters. In this chapter, we focus mainly

on the issue of efficiency, while in the next chapter we will have a close look at the issue

of quality.

The first task we face is to texture large river surfaces with high-resolution details but

minimum memory overhead. Inspired from texture sprites [LHN05], we represent the
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river surface by composing wave sprites: textured sprites which carry texture examples

of waves (Sections 5.1 and 5.3). Since sprites can be updated easily, the sprite-based

scheme is suitable for animation. Moreover, we need to consider following specific

requirements of our problem:

• The motion of the sprites should convey the flow motion;

• The density of the sprites should be adaptive for performance reasons;

• The sprites should be well distributed (no holes and not too much overlap) to avoid

biasing the global texture property after blending all sprites;

• The reconstructed global texture should ensure spatial and temporal continuity.

To meet these constraints, we propose a dynamic sampling method to maintain a set

of particles on river surfaces which advect with the flow while keeping a Poisson-disk

pattern in screen space (Section 5.2). Then we associate wave sprites to these particles

with the consideration of spatial and temporal continuity (Sections 5.2.2 and 5.2.3).

The sprite-based texture scheme together with the dynamic adaptive sampling technique

provides a novel scalable texturing method, particularly suitable for advected surface

details.

5.1 Wave Sprites

In this section, we introduce the basic concept of wave sprites. Figure 5.1 illustrates

various coordinate systems mentioned in the following discussion. Wave sprites are

texture elements that live on the river surface that can be parameterized as a mapping

space (e.g., top view of the scene). Their life cycles and locations are managed by the

sampling method introduced in the next section. Each sprite has a circular influence

region with a uniform radius r in screen space. The choice of r will be discussed in

Section 5.2.2. We use wave sprites to carry surface details characterized by a tileable

wave texture example T . For a newly created sprite, we initialize it with a random

texture coordinates ui which is constant during its life cycle. Given a wave sprite located
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at pi
1, we define its texture function in mapping space as

Si(x) = T (x−pi +ui). (5.1)

Then, the visual appearance of a river surface can be represented by a continuous texture

function F reconstructed by composing all sprites:

F(x) =
∑i wi ·Si(x)

∑i wi
. (5.2)

The weighting factor wi involves both a kernel function ki for ensuring spatial continuity

and an intensity function fi for ensuring temporal continuity:

wi(x, ti) = ki(x) · fi(ti), (5.3)

where ti is the age of a sprite. The functions ki and fi will be detailed in Sections 5.2.2

and 5.2.3, respectively.

x′

x

p′

p

World

Screen

Mapping

space

space

space

Wave sprites

r

Circular influence regions

Wave texture example

Figure 5.1: Illustration of wave sprites.

1Note that p′
i, the screen space coordinate of pi, is the center of the corresponding circular influence

region.
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5.2 Dynamic Adaptive Sampling

To achieve efficient texture advection, the wave sprites defined above should advect with

the river flow and be adaptive. In this section, we will introduce a sampling algorithm for

addressing these problems. After that, we will discuss the considerations for ensuring

the temporal coherence and spatial continuity of the reconstructed surfaces.

5.2.1 Sampling Algorithm

As we mentioned before, we rely on a set of dynamic adaptive particles to locate the

sprites. The main idea is to maintain a Poisson-disk pattern in screen space. We sum-

marize the algorithm of sampling in Algorithm 5.1.

Algorithm 5.1 Dynamic Adaptive Sampling

1: loop

2: Advect particles with flow.

3: Delete particles outside of the view frustum.

4: Delete particles violating the minimum distance criterion d in screen space.

5: Insert particles to keep the Poisson-disk pattern in screen space.

6: for all new particles do

7: Calculate world space coordinates.

8: end for

9: end loop

In line 5 of the algorithm, we need a method for generating the Poisson-disk pattern

from the existing particles which already respect the minimum distance criterion d.

For this, we adapt an incremental method, boundary sampling algorithm, presented

in [DH06]. This algorithm starts from a random point. The only adaptation we need is

to replace the initial point with a set of existing points. Another advantage of using the

boundary sampling algorithm is that it runs in O(N) time.

So far we have introduced the basic steps of the sampling algorithm. Since the

particles are finally used for carrying sprites, we have to consider the continuity issues

during the reconstruction of water surfaces. We discuss them in the next two sections.
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5.2.2 Spatial Continuity

For reconstructing a continuous surface, the sprites must fully cover the surface. It is

more convenient to analyse this problem in screen space than in world space, since the

influence regions of our sprites in screen space are disks with a uniform radius.

To ensure no holes in the reconstructed surface, the radius of the circular influence

region of a sprite, r, must be large enough. Generally, for a Poisson-disk distribution

with the minimum distance d, superimposing disks of radius no less than d centered

at sampling points will lead to no holes in the sampling domain. This can be easily

verified using proof by contradiction. Supposing there exists such a hole, we can take

a point in the hole which is apart from any other point with a distance larger than d,

which contradicts with the definition of the Poisson-disk distribution. In Algorithm 5.1,

we take d = r to ensure minimum overlap. However, the above analysis neglects the

problem near boundaries.

Before introducing the problem near boundaries, we first explain our consideration

of the sampling domain. The projected river surface in screen space usually does not

fully occupy the window. Intuitionally, we should sample only inside the projected

river surface. However, the projected surface may be composed of several unconnected

irregular shapes. Thus we need to adapt the Poisson-disk distribution algorithm used

in Algorithm5.1 to handle complex domains, which is not trivial. Instead, we simply

choose to sample in the whole window. It is reasonable to do this, since our test has

shown that the sampling procedure is not the performance bottleneck in our framework

(Figure 5.7).

Sampling in the whole window results in two kinds of particle: outside rivers or in-

side rivers. Note that we should not associate sprites to the outside particles that are not

advected by the flow. Otherwise we may have some fixed patches on the reconstructed

surface, which looks unnatural.

Now we can return to the potential flaw near the boundaries and our method for

addressing it. Figure 5.2 shows that we may face the risk of having uncovered parts

near the flow boundaries. This is because some outside particles near the boundaries

may invalidate some parts of the river surface for Poisson-disk sampling and they are

not associated with sprites as we stated earlier. We tackle this problem by deleting those

particles giving a greater chance for sampling inside the flow in the following frames.
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d/2

r

Terrain side

Flow side

Uncovered region

Figure 5.2: An uncovered region appears near the boundary in the flow side due to

the presences of near boundary particles in the terrain side. Here, the small disks are

Poisson-disks of radius d/2, and the large disks are the circular footprint of sprites of

radius r = d.

We detect and delete the outside particles which have at least one inside particle falling

in their circular neighborhoods of radius 2d. The neighbor relations between particles

are constructed as a byproduct of the Poisson-disk pass.

Finally, we need to ensure the continuity along the boundary of a sprite. For this,

we define a kernel function that is used in the weighting factor (see Equation 5.3). For

a sprite located at p in mapping space (Figure 5.1), the kernel function is:

k(x) = h(1− ‖m(x)−m(p)‖
r

), (5.4)

where m is the mapping from mapping space to screen space, and h is a smooth function

which has zero first derivatives at both ends:

h(α) =



















1, if α > 1,

6α5 −15α4 +10α3, if 0 ≤ α ≤ 1,

0, if α < 0.

(5.5)

5.2.3 Temporal Coherence

To avoid popping artifacts in the reconstructed texture, we fade in or fade out a sprite

when it is inserted or deleted, respectively. Correspondingly, an intensity value f is

associated with each particle. When a new particle is inserted, f is initialized to zero.
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Then f gradually increases with the life time t during a predefined blending period T :

f (t) =







t/T, if t < T ,

1, otherwise.
(5.6)

When a particle is deleted by the sampling algorithm, it will not be considered as an

existing sampling point anymore but still used for carrying the associated sprite until its

intensity has decreased to zero. Let fd be the intensity at the moment of deletion td . The

decreasing intensity is

f (t) =







fd(1− (t − td)/T), if t − td < T ,

0, otherwise.
(5.7)

In the texture reconstruction stage, the particle intensity is considered in the blending

weight (see Equation 5.3).

5.3 Surface Reconstruction

After the treatment in the last section, we have sprites which totally cover the water

surfaces visible in the view frustum, without too much overlapping. The problem is

now to blend and render these sprites efficiently.

We rely on an indirection grid following the idea presented in [LHN05]. Unlikely to

[LHN05], our grid is in screen space. We divide the window into a regular grid. Each

cell of the grid stores a list of sprites which cover it. To avoid redundancy, we only store

the indices of sprites in the grid while the parameters of sprites are stored separately

in a sprite parameters table (Figure 5.3). The parameters of a sprite include location

in mapping space, index of texture example, blending weight, and elapsed time. Both

the indirection grid and the sprite parameters table are encoded into textures, called

indirection texture and parameters texture respectively. This scheme allows us to treat

our sprite set as a simple material described by a pixel shader and applied to an ordinary

mesh rendered as a simple geometry.

The reconstruction algorithm performed in the pixel shader is summarized in Algo-

rithm 5.2 (see also Figure 5.1).
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Indirection grid Sprite parameters table

1

11

2

2

Figure 5.3: Storage scheme of sprites.

Algorithm 5.2 Surface Reconstruction Algorithm

1: for all pixels do

2: Access the indirection texture to find all the sprites covering current pixel.

3: for all sprites do

4: Access the parameters texture to get sprite parameters.

5: Calculate the contribution of current sprite by Equation 5.1.

6: Accumulate the current contribution.

7: end for

8: Apply ordinary shaders: bump map, reflection and refraction with Fresnel terms,

and shading.

9: end for

5.4 Implementation Details

5.4.1 Wave Texture Examples

The surface details we focus on are wave patterns statistically populating the river sur-

faces, rather than local and well-structured waves such as stationary shockwaves or hy-

draulic jumps we treated in Chapter 4. In our implementation, we treat simple noise per-

turbations and wind waves, but many others could be incorporated by the user (e.g., tur-

bulences, wakes and foams).

We use a tileable texture sample to represent a kind of wave. For the time variation,

one can rely on 3D textures or analytical evolution. Note that the texture data mainly

represents parameters to be provided to the pixel shader, which may generate complex
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results. In our implementation we store normalized heightfields and the pixel shader

uses them for bump mapping and environment mapping. Precisely, for simple pertur-

bations, we rely on Perlin noise which we prefer to precompute rather than to evaluate

on-the-fly. For the wind waves, we use Fourier generation and rely on analytical time

evolution as described in [Tes04].

Wave types can be carried by different sprites or shared by all sprites. In the second

case, tuning parameters (amplitude, wavelength or wind direction) can be controlled

at the scene level with a user-defined map or a procedural rule. Note that even wakes

can be managed domain-wise using shaping and masking rules analog to the ones used

in [BHN07].

5.4.2 From Screen Space to Mapping Space

When a new particle is generated by the sampling algorithm (Algorithm 5.1), we only

know its coordinates in screen space. But later, we need to know its coordinates in

world space for accessing flow velocity and texture addressing. Since the river surface

is not flat, it is not trivial to unproject the particle onto the river surface. We solve this

problem by rendering the river surface to a buffer, using the vertex coordinates as the

vertex colors. Since the number of newly created particles at each frame is small , we

only need to access a small set of pixels in the buffer. Instead of downloading the whole

buffer to CPU, we read the corresponding pixels by individual query for each newly

created particle.

5.5 Results and Discussion

In order to demonstrate the benefits of our method in real applications, we tested it in

a scene of size 25× 25 km2 (Figure 5.4). The test was done on a AMD Athlon 3200

processor at 1.8 GHz with a GeForce 8800 GTS graphics board. We set the window size

to be 800× 600 and the radius of the Poisson-disks to be 20 pixels. The intermediate

results (particles) and the final rendering results are shown in Figures 5.5 and 5.6,

respectively. See also the accompanying video 2.

2Available at http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/

http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/
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Figure 5.4: Terrain with size 25×25 km2.

Figure 5.7 shows that given a Poisson-disk radius, the running time of our method

depends linearly on the projected area of river surfaces in the window. Thus one signifi-

cant feature of our method is that the performance is scene-size independent. In the test,

we achieved real-time performance even in the worst case where the projected surfaces

occupy the whole window. Certainly, the performance will fall down if we decrease the

the Poisson-disk radius. However, a moderate value as we used in this test is sufficient

due to the adaptivity of the particles and the sprite-based rendering scheme.

The accompany video shows that our method can ensure the continuity of water

motion when the camera travels along a long river or zoom in and out at any moment.

Furthermore, the continuity is also ensured when the user edits the rivers on the fly. The

river appearances can be easily modified via the wave texture examples.

To demonstrate that advecting details with channel-confined flow is necessary for

river animation, we compared our results against the animation of non-flowing water

and uniform flow which can be handled by previous methods. The results demonstrate

that our method shows considerable improvements (see the accompanying video).
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(a) Far view.

(b) Middle view.

(c) Close view.

Figure 5.5: Particles maintain the Poisson-disk pattern in screen space. Here, the red are

particles inside rivers, the black are particles outside rivers, and the yellow are particles

outside rivers but near river boundaries.
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Figure 5.7: Top: The running time of our method in each frame. Note that the parti-

cles advection part includes the time cost for calculating the river velocity on-the-fly

(Chap. 3). Bottom: From left to right, typical views with increasing projected areas of

river surfaces.

5.6 Summary

In this chapter, we have proposed a scalable texturing scheme for representing advected

details on flow surfaces. The phenomenon of wave advection has been achieved by

advecting wave sprites with the flow. In addition, we proposed an adaptive dynamic

sampling scheme to make the density of sprites adaptive to the view distance thus en-

suring a high performance. The sampling scheme also ensures well-separated sprites

and thus avoids biasing the texture property of the reconstructed surface as much as

possible. With our texturing method, the visual appearance of a river surface is easily

controllable by replacing or tuning texture examples.

One limitation of the present method is that it neglects the rotation and deformation

of the sprites. This simplification is acceptable for the smooth flow through river chan-

nels, but it will leads visible artifacts in regions having high velocity variation. We will

address this issue in the next chapter, where we present a Lagrangian texture advection
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method.

5.7 French Chapter Abstract

Dans ce chapitre, nous avons proposé un nouveau schéma de texturage pour représenter

des détails advectés à la surface des rivières. L’advection des vagues de surface a été ob-

tenue en advectant des sprites de texture le long du flot. Nous avons également présenté

une schéma d’échantillonnage permettant d’adapter le nombre de sprites en fonction de

la distance au point de vue, ce qui permet d’obtenir de bonnes performances. Le schéma

d’échantillonnage permet également d’avoir des sprites bien séparés, et donc de ne pas

dégrader la surface reconstruite. De plus, l’apparence visuelle de la rivière peut être

facilement modifiée en remplaçant le motif de la texture.

Cependant, cette méthode présente certaines limitations au niveau de la qualité.

Nous avons en effet jusqu’à maintenant ignoré la rotation et la déformation des sprites.

Cette simplification fonctionne efficacement pour des rivières dont le courant est régulier,

mais produira des artefacts dans des cas plus généraux. Nous détaillons ce problème

dans le prochain chapitre où nous présentons une méthode d’advection de texture La-

grangienne.



Chapter 6

Micro-Scale:

Lagrangian Texture Advection

The common goal of the preceding chapter and this chapter is to find an efficient way to

texture fluid surfaces with two contrary requirements: (1) the texture contents follow the

underlying flow, and (2) the texture preserves its statistic properties. The results of the

preceding chapter show that the technique of wave sprites, an adaptive sprite-based tex-

turing method, scales well to large scenes in real-time applications. It can also meet the

requirements of conserving the texture property. However, this method neglects local

texture deformation, and thus fails to convey sub-sprite flow motion, which sometimes

violates the first requirement mentioned above. The problem is particularly serious

when we want to handle arbitrary flow fields which may have high velocity variation.

In this chapter, we still employ the Lagrangian formalism as we did in the preceding

chapter, but make a further step by accounting for the local texture deformation.

6.1 Motivation

In this section, we motivate our method by examining the quality issue of existing Eu-

lerian texture advection methods [MB95, Ney03]. This kind of method maps a texture

on a grid and advect the mapping coordinates with the given flow. Advecting texture

coordinates will lead to texture stretching which continuously increases up to totally

destroying the texture appearance. Therefore, an important step is to correct the texture

distortion while enforcing temporal continuity. An ad hoc method is to periodically
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reinitialize the texture mapping after some delay, called latency, and blend the two de-

phased textures. However, choosing a reasonable latency is not trivial. The latency used

for controlling texture regeneration allows one to trade texture distortion for the quality

of motion illusion. A higher latency permits larger texture distortion and thus the result-

ing texture sequences has a better consistence with the flow but a worse preservation of

texture spectrum. A lower latency leads to a reverse result. To make balance between

flow consistence and spectrum conservation, an optimal latency should vary with the lo-

cation in a flow field, depending on the flow velocity and its gradient. However, only one

global latency is used in [MB95]. As an improvement to this method, Neyret [Ney03]

uses the latency that is adaptive to local flow conditions. His method advects several lay-

ers each of which is made by three textures. Each layer uses a different latency value.

The local adaptation of latency is achieved by interpolating between the two closest lay-

ers according to a texture distortion metric in the spirit of MIP-mapping. This method

works better than [MB95] but still suffers from the following drawbacks. First, the la-

tency of the various layers is arbitrary. Quality will be broken for flows slower or faster

than a given range. In particular, flows with parts at rest always cause problems because

arbitrary long latency should be used at slow places. Second, the adaptation of latency

is achieved by a simple interpolation between layers, which is not accurate. Finally,

blending all these textures is costly and tends to smooth the resulting spectrum.

Besides the above problems related to the latency, the texture advection methods

proposed in [MB95, Ney03] also share another drawback. In these methods, advection

and blending of textures is done in an entire domain. This scheme is not optimal for

phenomena which are visible only at some sparse places (e.g., fire, smoke and clouds),

especially in 3D cases.

We believe that most of the above drawbacks originate from the underlying Eulerian

formalism: the requirement of adapting and regenerating locally does not match well

with having a continuous mapping over the whole domain. Therefore, we propose a La-

grangian based method. The basic idea is to disperse texture distortion and regeneration

over both space and time by the Lagrangian formalism while using local deformable

patches to ensure continuity.
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6.2 Our Method

Our method relies on a collection of particles each of which is associated with a de-

formable textured grid, called a patch. There is a one-to-one relationship between par-

ticles and patches. These patches will later be used to construct an advected texture

by blending all of them. We develop our algorithm by considering the requirements of

texture advection as follows.

First, texture features should move with a given flow. This can be easily done by

advecting all particles and grid nodes of patches with the flow.

Second, the texture should conserve its statistics property which includes both static

and dynamic aspects. On the static aspect, we let each patch initially map to a ran-

dom portion of a given reference texture. Previous texture synthesis work [XGS00]

has demonstrated that combining random patches of a texture example can yield a new

texture which preserves the statistics of the texture example, especially for stochastic

textures. In addition, we need to separate the patches well but still cover the texture

domain fully. This is done by maintaining particles with a Poisson-disk distribution. On

the dynamic aspect, patches undergo distortion because grid nodes are advected with the

flow, which will gradually destroy the texture statistics. To avoid this, we kill a particle

when the distortion of its patch exceeds some threshold.

Finally, the advected texture should preserve temporal continuity. To do so, when

a particle is killed, we do not immediately discard it. Instead, we keep this particle

in a decay list where each particle and its patch continue to be advected while fading

out until the patch is totally invisible. The particles in the decay list are not consid-

ered in the Poisson-distribution anymore, but their associated patches are still used for

reconstructing the global texture.

Putting the above considerations together, the full algorithm (Figure 6.1) in each

time step can be summarized as follows:

- Advect particles and the grid nodes of each patch with the underlying flow.

- Kill a particle when the distortion of its associated patch exceeds some threshold

(Sections 6.2.2 and 6.2.3).

- Maintain a Poisson-disk distribution of particles by killing or inserting particles (Sec-

tion 6.2.1).

- Compute a weight map including temporal weights and spatial weights for each patch
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(Section 6.2.4).

- Reconstruct a global texture by blending all the patches (Section 6.2.6).

Reference texture

Input flow

Deformable patch

Kernel

Advected texture

Poisson disks

Figure 6.1: Overview of our algorithm. Left: Input a flow field and a reference texture.

Middle bottom: Particles advected with the input flow while keeping the Poisson disk

distribution. Middle top: A deformable patch is associated to each particle and also

advected with the input flow. Each patch carries a random portion of the reference

texture. Right: Blending all the patches yields an advected texture.

6.2.1 Dynamic Distribution of Particles

As we stated above, we have several requirements for placing patches:

- Patches should follow the underlying flow to convey the flow motion;

- Superimposing all patches should fully cover the texture space, to ensure spatial con-

tinuity;

- The patches should overlap as little as possible to avoid biasing the texture spectrum.
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In fact, this problem is similar to the one we considered in Section 5.2. The only dif-

ference is that here the distribution is in texture space, but there the distribution is in

screen-space. Thus the main part of the adaptive sampling algorithm proposed there

can be re-used to address the current problem.

The idea is to maintain a set of particles that are advected with the underlying flow

while keeping a Poisson-disk distribution by insertion or deletion. The well-separated

particles resulting from the Poisson-disk distribution make the patches overlap as little

as possible. As we stated in Section 5.2.2, given a Poisson-disk point set with radius r,

the union of all disks of radius 2r centered at the Poisson-disk points can fully cover the

sampling domain. This property helps satisfy the requirement of full-coverage in our

problem, which will be detailed in the following section. In the following discussion,

we call these disks of radius 2r particle kernels.

Our method for managing particles has two main stages. In the first stage, after

updating particle positions by advection, we kill particles if their minimal distances to

others are less than 2(1−α)r, where r is the Poisson-disk radius. We relax the radius by

a factor α so that we kill as few as possible too young particles, because young particles

tend to associate with patches with small distortion. α should not be too large in order to

ensure that sprites separate well as a Poisson-disk distribution. In our implementation,

we use α = 0.25. Second, once we have achieved a set of particles respecting the

relaxed minimal distance criterion, we use the boundary sampling algorithm [DH06] to

insert new particles for maintaining a Poisson-disk pattern with radius of r. Here, we

need a trivial adaption of the boundary sampling algorithm. The first step of the original

algorithm is to generate a random point. Instead, we start the algorithm from an existing

sampling points. It is reasonable to do this adaptation because the boundary sampling

algorithm is essentially incremental.

6.2.2 Set-up of Patches

The dimension of patches should be set correctly to ensure the full coverage of the

texture space. Thanks to the property of the Poisson-disk distribution we mentioned in

the preceding section, we can guarantee full coverage by ensuring that each patch fully

covers its corresponding particle kernel. Therefore, at particle creation we start with a

square patch of side size 4(1+β )r centered at the particle (Figure 6.2).
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4(1+β )r

r
2r

Figure 6.2: An initial patch is square and contains a regular grid (8× 8 nodes in our

implementation). The side size of the patch is 4(1 + β )r, where r is the Poisson-disk

radius and β > 0, so that the patch can totally cover the particle kernel of radius 2r.

We let β > 0 to ensure that a patch within a tolerable deformation (defined in the

next section) still can fully cover its particle kernel. Still, a patch may finally fail to

fully cover its particle kernel if one of the patch borders intersects with the kernel after

an excessive distortion. In this case, we kill the corresponding particle. Though β

corresponds to the maximum tolerable texture distortion, it is not used as a parameter

for controlling the texture distortion in our method. In fact, we rely on a more precise

method described in the next section for controlling the texture distortion. In this sense,

β can be an arbitrary large value.

On the other hand, we should not use a too large β value for the performance rea-

sons. The larger β , the more nodes needed to be advected. Therefore, we used a mod-

erate value β = 0.3 in our implementation.

The patch is larger than the particle kernel, but only the portion of a patch that

intersects with the corresponding particle kernel finally contributes to the reconstructed

global texture. Thus we can achieve a minimal overlapping during the reconstruction.

6.2.3 The Distortion Metric

To limit the maximum distortion of an advected texture, we kill a particle when the

distortion metric of its associated patch exceeds some threshold. In this section, we

describe the way we use for measuring the distortion of a patch. Our basic idea is

to triangulate a patch, and calculate the singular values of the Jacobian of the affine

transformation between initial triangles and advected triangles (Figure 6.3). We derive

our distortion metric in the follows.
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Initial triangles Advected triangles

S

Figure 6.3: The distortion of a patch is measured by calculating the singular values of

the Jacobian of the affine transformation between initial triangles and advected triangles.

Given an initial triangle G = △q1q2q3, and its corresponding advected triangle

△p1 p2p3, where pi = (xi,yi), the unique affine mapping S(p) = q is

S(p) = (〈p, p2, p3〉q1 + 〈p, p3, p1〉q2 + 〈p, p1, p2〉q3)/〈p1, p2, p3〉, (6.1)

and the partial derivates of S are

Sx =
∂S

∂x
=

q1(y2 − y3)+q2(y3 − y1)+q3(y1 − y2)

2〈p1, p2, p3〉
,

Sy =
∂S

∂y
=

q1(x2 − x3)+q2(x3 − x1)+q3(x1 − x2)

2〈p1, p2, p3〉
, (6.2)

where 〈A,B,C〉 denotes the area of triangle ABC. The singular values of the 2 × 2

Jacobian matrix S = [Sx,Sy] are

γmin =

√

1/2((a+ c)−
√

(a− c)2 +4b2),

γmax =

√

1/2((a+ c)+
√

(a− c)2 +4b2), (6.3)

where a = Sx · Sx, b = Sx · Sy, and c = Sy · Sy. They give the minimum and maxi-

mum length that a unit vector can get after the transformation due to advection. As

in [SCOGL02], we use the following expression for measuring the distortion of the

triangle G:

d(G) = max(γmax,1/γmin). (6.4)

Note that d(G) ≥ 1 and the equality means no distortion.

Once we have defined the distortion metric of a single triangle, we are able to define
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a distortion metric over a whole patch. In our case, we want to measure the worst

case. Therefore, let P = {Gi} be the triangles in a patch which intersect with its particle

kernel, we use

D = max
Gi∈P

d(Gi) (6.5)

as the distortion metric over the whole patch. To limit the maximum distortion of an

advected texture, we kill a particle when D > δkill . We use δkill = 2.5 in our implemen-

tation.

Similarly, we can define the distortion metric at each grid node. Given a grid node

x, let M = {Gi} be the adjacent triangles of the node. We define the distortion metric at

the node as

δ (x) = max
Gi∈M

d(Gi). (6.6)

This metric will later be used for determining the spatial weights of a patch discussed

in the following section.

6.2.4 Computing Weight Maps

Enforcing temporal and spatial continuity is important in texture advection. To achieve

this goal, we compute a weight map for each patch where weight values vary in time

and space. Then, the weight maps are used to blend patches in the final texture recon-

struction stage.

Temporal Weights

In order to avoid popping artifacts, we consider fade-in and fade-out associated with the

distortion and life time of patches.

We fade in a newly created patch with a weight function Fin which increases linearly

from 0 to 1 during a period of Tin. In our implementation, we used Tin = 2 seconds.

Comparatively, the fade-out scheme is more complicated.

Fade-out weight is associated with the distortion of patches. For better continuity,

this weight is counted from the birth time rather than the killing time. We fade out a

patch continuously according to a function Fdisto(x) based on the distortion metric δ (x)

at nodes, so that a node area becomes invisible when δ > δmax, with δmax > δkill . A
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particle is removed from the decay list when all its patch nodes are invisible. We define

Fdisto = 1− δ −1

δmax −1
. (6.7)

The threshold δmax, together with δkill mentioned in the preceding section, is the main

parameter in our model to balance between preserving texture spectrum and conveying

flow motion. In our examples, we used δmax = 5 seconds.

The fade-out associated with distortion occasionally fails to remove a particle from

the decay list in a limit period when the distortion of its patch does not gradually accu-

mulate. On the other hand, we hope to limit the patches in the decay list to get as little

overlapping as possible. Therefore, we introduce another fade-out weight Fout which is

associated with the elapsed time accounted from the killing time. Fout decreases linearly

from 1 to 0 during a period of Tout which is the maximum survival time of a particle in

the decay list. Since Tout is mainly a security set but not the main quality control pa-

rameter in our model, it is not a problem to use a large value. We used 5 seconds in our

implementation.

Spatial Weights

Recall that only the portion of the patch that intersects with the particle kernel con-

tributes to the reconstruction. To ensure spatial continuity, we consider a kernel Kpartic

that fades from 1 at the center to 0 at the border of the particle kernel. In our implemen-

tation we use a linear kernel intensity.

For a particle in the decay list, its associated patch may stretch up to not totally

covering the particle kernel. To ensure continuity at patch borders, we introduce a patch

kernel Kpatch fading to the borders. In our implementation we set it to 1 at the inner

nodes and we bilinearly interpolate to 0 on the border cells.

Putting Together Weights

The total weight at a given location is then defined as the product of all the fading

coefficients and spatial kernels:

w(x, t) = Fin(t)Fout(t)Fdisto(δ (x))Kpartic(x)Kpatch(x). (6.8)
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During the reconstruction, it is renormalized according to the sum of the weights of

overlapping patches. This provides a resulting animated texture continuous in space

and time.

6.2.5 Handling Solid Boundaries

As a Lagrangian approach, our method is intrinsically more flexible than Eulerian ap-

proaches for handling the flow confined by complex boundaries. Still, we need a specific

treatment for patches overlapping solid boundaries. In these patches, grid nodes outside

the flow domain fail to achieve the flow velocity. For no-slip boundaries, we can simply

set zero velocity for the outside nodes. However, it is not reasonable to do this for slip

boundaries. In the physical sense, a slip boundary condition can also be interpreted as a

symmetry boundary. Thus we should extrapolate the outside velocities according to the

velocities in nearby inside regions.

We build pyramid grids to estimate the velocities of the outside nodes in a patch

(Figure 6.4). The idea is similar to the push-pull algorithm proposed in [GGSC96].

Given a patch overlapping boundaries with 2n×2n nodes, we set velocities to the inside

nodes accordingly and mark the outside nodes as unknown. We build a coarser grid

with 2(n−1) × 2(n−1) nodes by averaging the known values of every 2× 2 nodes in the

current grid. Note that four nodes marked as unknown will still lead to an unknown

node in the coarser level. We repeat building coarser grids until we reach a grid with no

unknown node. If only the initial grid is not full of unknown nodes, we can always get

such a grid without unknown nodes. Then, in reverse, we go down in the hierarchy from

the coarsest grid, filling unknown nodes in a grid with the values of the corresponding

nodes in the neighboring coarser grid. By using the above method, we can estimate

velocities for the unknown nodes according to known values as local as possible.

6.2.6 Texture Reconstruction

So far we have had a set of patches that are well separated while fully covering the

texture space. The advected texture at x can be computed by blending the textures Ti(x)
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Nodes with known velocities

Unknown nodes

Solid boundary

Figure 6.4: Pyramid grids for extrapolating the velocities of the outside nodes in a patch

intersecting the solid boundary. We repeatedly build coarser grids by averaging known

velocities of every 2×2 nodes until we reach a grid with no unknown node. Then, we

go down in the hierarchy from the coarsest grid, filling unknown nodes in a grid with

the values from the neighboring coarser grid.

of the patches covering this location with:

T (x) =
∑wiTi

∑wi
, (6.9)

where Ti maps to a random portion of the reference texture, and wi is the weight factor

defined in Equation 6.8.

We propose two methods to blend the deformable textured patches:

• We can directly draw all patches, accumulating the wiTi and wi in separate chan-

nels. A second pass combines these channels to evaluate Equation 6.9.

• Alternatively, we can use an indirection structure as we did in Section 5.3. In a

first pass we draw for each patch its local parameterization (u,v) and its weights

w(x, t) in an FFD image. We divide the fluid domain in tiles and compute for each

tile the list of patches that intersect it. In a second pass a pixel shader uses these

indirection maps to find all the patches that cover a given pixel, and get the (u,v)

and w(x, t) of each patch at this pixel which allows us to evaluate Equation 6.9.

The second method is more complex but is better adapted to the case of a sparse

fluid in a large domain, such as a river. It computes only the visible pixels, and its

memory usage is proportional to the number of grids, as opposed to the size of the
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domain. On the contrary, the first method requires textures covering the whole domain

at the maximum resolution, using floats (since the accumulated values are not bounded).

It thus computes all pixels, even invisible ones.

In both methods the input texture can contain either final colors or input parameters

for a complex procedural shader (clouds, fires, etc). In the second case we blend the

parameters before applying the procedural shader to avoid ghosting effects [Ney03].

This also decreases the computation cost as the procedural shader is called only once

per pixel instead of once per grid. Note that the procedural shader can use displacement

mapping to create a 3D surface from the 2D advected texture (Figure 6.9).

6.3 Experimental Validation

To validate our method, we compared it with an Eulerian texture advection method.

We first introduce the experimental workbench in Section 6.3.1, and then describe our

observations in Section 6.3.2. Finally, we give the performance of our method in Sec-

tion 6.3.3.

6.3.1 Workbench

Reference Method

As existing systems are too complex in terms of free parameters, we created a mixed

method for meaningful comparison. This Eulerian method regenerates textures with

global latency and blends three dephased textures. Thus the method represents an im-

provement of [MB95] and a portion of [Ney03]. As the formal method blends only

two textures, its spectrum oscillates in time. Blending three dephased textures can over-

come this problem, which corresponds to a single layer of the latter method. Since

the latter method uses three such layers and local adaptive latency, it will work better

than our reference method. However, using this method complicates the comparison.

Most importantly, as we stated earlier, this method cannot solve the problem of latency

completely. The valid range of flow is still limited. Therefore, we believe that using a

single layer and tuning latency manually provides the best understanding of the intrinsic

problem of the Eulerian approach.
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Measurements

Texture advection has to meet two different requirements. On one hand, the texture se-

quence should be consistent with the input flow. On the other hand, the texture sequence

should maintain the texture spectrum. Accordingly, our measurements include two as-

pects. To evaluate the flow consistency, we computed an optical flow from the texture

sequence and compared it with the input flow. To evaluate the preservation of texture

spectrum, we computed the Fourier transform of the advected texture and compared it

with the spectrum of the reference texture.

Input Flow

We used various flow-fields as input (Figure 6.5):

- Simple analytic flows: constant flow, shear flow, rotating flow and source flow. These

illustrate the algorithms’ behavior on basic critical situations and these are the most

meaningful in terms of spectrum.

- A free flow: user interacting with a 2D Navier-Stoke solver [Sta99]. This is a more

typical heterogeneous flow.

- A flow with boundaries: using slip or no-slip conditions. It is challenging since the

texture must obey extra constraints and the flow includes bifurcations.

Reference Texture

We used a 3 octave Perlin noise as the reference texture (Figure 6.1, left top). The

smallest wavelength corresponds to 8 pixels and the largest wavelength is about 1/6th of

our particle kernel size.

6.3.2 Results

Please see the accompanying video for the comparison results 1. The results show that

our method can ensure both spectrum conservation and flow consistence but the Eulerain

texture advection often miss one of the requirements. We give some detailed remarks in

the following paragraphs.

1http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/

http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/
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Source flow Rotation flow Shear flow

Flo

Free flow Boundary confined: slip Boundary confined: non-slip

Figure 6.5: Various input flow used for evaluating our texture advection method.

For a constant flow, the FFT still shows slight oscillations for the reference Eulerian

method, which does not exist at all in ours. Note also that the strip artifact in Perlin

FFT [KKS08] is smoothed in our model.

For the shear flow examples, the velocity ramps from 0 at the boundary to a high

value in the middle. This is a very demanding test of distortion and continuity, as well

as the reconstruction of a continuous field from our discrete patches. For the refer-

ence method, it is easy to get either vanishing of flow motion or chewing-gum like

overstretching (Figure 6.6). As seen in the accompanying video, our method preserves

nicely both properties nicely. Moreover, our reconstructed texture is very homogeneous

and our reconstructed motion is very accurate: even very slow velocity can be repro-

duced. The full [Ney03] method should be able to alleviate the flaws (within a given

range), but it will introduce heterogeneous over-blurred bands corresponding to transi-

tion areas between layers.
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(a) (b) (c)

side

(d) (e) (f)

Screen

(g) (h) (i)

Figure 6.6: Problems of Eulerian texture advection. Left: input texture (a), input flow

(d) and Fourier spectrum of input texture (g). Middle: with a short regeneration latency

the advected texture (b) conveys an incorrect optical flow (e), but the Fourier spectrum

is almost preserved (h). Right: with a long latency the texture is too stretched (c) and

the Fourier spectrum is distorted (i), but the optical flow matches the input velocity field

(f).
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For the free flow, note that the velocity varies at a scale much smaller than the size

of particle kernels. Still, our method easily accommodates the heterogeneity of the flow

field (Figure 6.7), which the Eulerian method cannot do either. The same is true for

the flow with boundaries and obstacle, despite the bifurcation and high distortions of

the flow. Note that for the source flow, our method does not need to extrapolate (u,v)

values at the source location.

6.3.3 Performances

We did our tests on an Athlon AMD 3000+ at 1.8GHz with an Nvidia GeForce 8800GTS.

We measured performance on the free flow example. Image resolution is 1024×1024.

The fluid grid is 64×64. We used d = 100 pixels which gave 150 particles on average.

Patches have 8× 8 nodes, so one patch cell is about 32× 32 pixels. FFD images are

64×64 pixels. For reference texture we used a 1024×1024 image showing 3 octaves

of Perlin noise (pseudo-wavelengths from 8 to 32 pixels).

The timing was 10 ms per frame (100 FPS). It decomposes into 1.6 ms for the stable

fluid simulation and 8.1 ms for texture advection. In this last, advection of nodes repre-

sents 5.1 ms and final reconstruction 2.5 ms. Poisson disk treatment cost is negligible.

In a real application the cost of the final color shader should be added.

In terms of memory, the FFD images (u,v,w(x, t)) cost 64× 64×N × 3 bytes for

N particles, and the patches cost 8× 8×N × 2 floats. This makes about 2 MB in our

example.

6.4 Discussion

Our new texture advection method is a balance that associates Lagrangian and local

grids for the best. The Lagrangian formalism brings the decorrelation of texture map-

ping and regeneration events. Using local grids ensures continuous texture animation

and provides an accurate way to measure texture distortion. Unlike the existing Eule-

rian methods, we do not rely on arbitrary latency values.

In addition, the Lagrangian formalism has intrinsic advantages in terms of perfor-

mance. It allows us to easily avoid the computation of the empty region in a flow do-

main, which was not possible with [Ney03]. Furthermore, combining our method with
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the adaptive sampling technique introduced in the preceding chapter, we will arrive at

a scalable texture advection method that is suitable for very large and even unbounded

scenes.

By connecting to various shaders, advected noise textures can generate abundant an-

imated details. We have applied advected Perlin noise (or flow noise [PN01]) in several

applications: clouds (Figures 6.8 and 6.9), fires (Figure 6.12) and rivers (Figures 6.11

and 6.10). See also the accompanying video.

Though our method mainly targets textures specified by spectrum or procedural pa-

rameters, experimental results show that our method also produces reasonable results for

a wide variety of image textures (see Figures 6.13, 6.14 and 6.15, and the accompany-

ing video). As expected, large-scale texture heterogeneities or anisotropy yields visible

transition, but in practice they are often not annoying to the eye (e.g., foam). Using an

animated reference texture would have even better masked the transition. Note that for

high-structured textures, our method suffers from ghosting artifacts since the patches

simply take random portions from the reference texture. A promising future work is to

choose a portion of texture that best matches the neighborhood for each newly created

patch. Note that due to our deformable patches (and thus differently to other blended-

sprite approaches [BSHK04]), two blended pixels of two blended patches will remain

superimposed during advecting without relative sliding.

A concurrent work [NSCL08] constructs small scale turbulent flow velocities by

superposing advected noise particles. The technique shares some similarity with ours,

while a main difference is that they do not account for the deformation of the noise

texture. This may be accepted in the case of constructing turbulent velocity fields but not

in our case, where we need to avoid the sliding of texture content between overlapping

patches.

6.5 Summary

In this chapter we have presented a new texture advection method using the combination

of particle advection and texture patch blending. The particles follow a birth and death

process to maintain uniform density over the domain. Each particle is associated with

a deformable textured patch. The patches are advected and distorted according to the

underlying flow field. Each patch maps to a random portion of a reference texture. The
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key benefit of our method is that texture stretching and correction (via regeneration)

are dispersed over both space and time, which avoids the artifacts that the Eulerian

method suffers from. Moreover, the method is well-suited for sparse or large domains.

In the next chapter, we conclude with a summary of this dissertation work, including

limitations and ideas for future work.

6.6 French Chapter Abstract

Dans ce chapitre, nous avons proposé un nouveau schéma de texturage utilisant

des particules advectées déformables. Les particules naissent et meurent afin de garder

une densité uniforme sur le domaine. A chaque particule est associé un patch texturé

déformable. Ces patches sont advectés et déformés en fonction du courant sous jacent.

Chaque patch correspond à une portion aléatoire d’une texture de référence. Le princi-

pal avantage de notre méthode provient du fait que l’étirement et la correction (par la

régénération) de la texture sont répartis dans l’espace et le temps, ce qui permet d’éviter

les artefacts présents avec la méthode Eulérienne. De plus, cette méthode convient bien

pour les domaines clairsemés ou grands. Dans le chapitre suivant nous présentons une

conclusion ainsi qu’un résumé de cette thèse. Nous présentons également les limitations

de nos méthodes ainsi que plusieurs pistes pour les travaux futurs.
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Input Our Results

Figure 6.7: Results of our method. Left: input texture , input flow, and Fourier spectrum

of input texture. Right: our advected texture , its optical flow, and its Fourier spectrum.
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1

Frame 20 Frame 40

Mapping

Frame 60 Frame 80

Figure 6.9: Animated clouds with advected details. It is generated in a number of steps.

A 2D density field is advected with a low resolution velocity field. Flow noise [PN01]

advected with our method is used to modulate the density field. Finally, the enriched

density field is used for displacement mapping in a cloud shader.
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Frame 20 Frame 40

Mapping

Frame 60 Frame 80

Figure 6.10: Flowing rivers using advected noise for bump mapping. It demonstrates

that our texture advection method can conserve noise spectrum well even when the flow

has a drastic variation (e.g., the flow region in front of the island). Please see also the

accompanying video.
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1

Frame 20 Frame 40

Mapping

Frame 60 Frame 80

Figure 6.11: Flowing rivers using advected noise. The high-frequency component of

the advected noise is used for bump mapping, and the the low-frequency component

is used for displacement mapping. Please consult the accompanying video for a better

demonstration.
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Frame 20 Frame 40

Frame 60 Frame 80

Figure 6.12: Animated fires with abundant details. It is generated in several steps. A 2D

density field is advected with a low resolution velocity field. Then, advected flow noise

is used to modulate the density field. Finally, a fire shader uses the enriched density

field to generate colors.
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Indirection

Figure 6.13: Non-noise textures used in our tests. The last one represents highly struc-

tured textures.
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Poisson

Source flow-field

parametersxture

Frame 30 Frame 60 Frame 90 Frame 120

Figure 6.14: Advecting non-noise image textures using a flow-field. Shown are

keyframes from texture sequences that follow a source flow-field. It demonstrates that

our method works for some image textures (top and middle) but not for highly structured

textures (bottom).
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Input flow-field

sidespacex

Frame 30 Frame 40 Frame 50 Frame 60

Figure 6.15: Advecting non-noise image textures using a flow-filed. Shown are

keyframes from texture sequences that follow a boundary confined flow. It demonstrates

that our method works for constrained flow and many image textures.
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Chapter 7

Conclusion

The two sections below list the specific contributions of this dissertation and outline

directions for future work in this area.

7.1 Summary of Contributions

We have proposed a three-scale framework for river animation, with novel models for

each scale. In the macro-scale, we proposed a procedural method for generating plau-

sible river flow on-the-fly. In the meso-scale, we proposed a feature-based vector simu-

lation approach and applied it to simulating the waves caused by obstacles in a running

stream. In the micro-scale, we proposed an adaptive method for texturing large ani-

mated flow surfaces with scene-independent performance. Moreover, we proposed a

spectrum-preservation texture advection method based on the Lagrangian formalism.

Both of the two texturing models rely on our efficient dynamic sampling scheme.

Combining these models together, we have achieved real-time, scalable and control-

lable river animation (see accompanying video 1). The performance of our animation

can meet the requirement of real-time applications. The procedural velocity and screen

space sampling make our animation workable for landscapes and other very large scale

scenes. Meanwhile, users are also allowed to observe a river closely and detailed surface

waves are available. Our models ensure that all parts of the river are continuous both in

space and time, even while the user is exploring, zooming or editing the river itself. In

addition, the user can intuitively design and control the river flow (e.g., trajectory and

1http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/

http://evasion.inrialpes.fr/Membres/Qizhi.Yu/phd/
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velocity), and easily modify the surface details of rivers by changing reference textures

or wave profiles.

7.2 Limitations and Future Work

In this section, we discuss the limitations and future work for the proposals in each

scale.

7.2.1 Macro-Scale

The velocity profile of our procedural flow is influenced both by the interpolation param-

eter p and the search radius s in Equation 3.7. However, we still do not know the precise

relationship between these parameters and the velocity profile. Future work needs to

be done in order to develop an accurate handle that allows the user to manipulate the

velocity profile.

In this work, we assumed that the river surface in the macro-scale is relatively

unchanging. Further considerations will allow for the inclusion of time-varying long

waves, and an efficient model is needed to simulate this unsteady river surface.

In addition, we have argued that it is possible to account for the slop of terrain in our

model. We would like to add this feature in our implementation.

7.2.2 Meso-Scale

Besides the waves caused by obstacles, many other local and structured waves in run-

ning streams could be simulated by using featured-based vector simulation, such as

hydraulic jumps, boils, ship waves, turbulent wakes, and cascades (Figure 1.2). For

each phenomenon, one first needs to define appropriate vector primitives. and a physi-

cal model for constructing and animating the vector features. Then, the vector features

must be converted to a representation suitable for high-quality rendering.

7.2.3 Micro-Scale: Wave Sprites

On the implementation side, it would be useful to use various wave examples for dif-

ferent sprites according to some domain-wise controls (e.g., wind shadow, wakes). It
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would also be interesting to replace the bump mapping with displacement mapping in

our implementation.

Regarding the model itself, it would be interesting to adapt the distribution of parti-

cles to the stretching of the flow in order to better represent regions with high velocity

variation. This is a form of importance sampling (i.e., it is no longer a Poisson-disk

homogeneous distribution). Note that the boundary sampling method [DH06] could be

adapted for this purpose. The simplest way might be to use the method directly with

different sized Poisson-disks. It does work as long as the ratio of their sizes is less than

two.

7.2.4 Micro-Scale: Lagrangian Texture Advection

It would be useful to incorporate our Lagrangian texture advection method into the wave

sprites model. By doing this, we would obtain an adaptive spectrum-preserving texture

advection method.

With our method, advecting structured images sometimes does not yield good results

because the texture content of each patch is chosen randomly from the reference texture.

We could improve this by choosing for a newly born patch a portion of the reference

texture that best matches the textures of its neighboring patches. Since all the patches

strictly follow the underlying flow, the correlation between the patches will remain in

the following frames.

To fully exploit the benefits of the Lagrangian formalism, we would like to extend

the texture advection method for working on a 3D surface or in a volume. The fist step

is to extend our dynamic poisson-disk sampling scheme to a higher dimension.

7.3 French Chapter Abstract

Dans cette thèse, nous avons proposé un modèle multi-échelle pour l’animation de

rivière. Nous avons présenté un nouveau modèle pour chaque échelle. A l’échelle ma-

cro, nous avons proposé une méthode procédurale permettant de générer une rivière

réaliste à la volée. A l’échelle méso nous avons amélioré un modèle phénoménologique

basé sur une représentation vectorielle des ondes de choc près des obstacles, et proposé

une methode pour la reconstruction adaptative de la surface de l’eau. A l’échelle mi-
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cro, nous avons présenté une méthode adaptative pour texturer des surfaces de grande

étendue avec des performances indépendantes de la scène. Nous avons également pro-

posé une méthode d’advection de texture. Ces deux modèles reposent sur notre schéma

d’échantillonnage adaptatif.

En combinant ces modèles, nous avons pu animer des rivières de taille mondiale en

temps réel, tout en étant contrôlable. Les performances de notre système sont indépendantes

de la scène. La vitesse procédurale et l’échantillonage en espace écran permettent à notre

système de fonctionner sur des domaines illimités. Les utilisateurs peuvent observer la

rivière de très près ou de très loin à tout moment. Des vagues très détaillées peuvent

être affichées. Les différents parties des rivières sont continues dans l’espace et dans le

temps, même lors de l’exploration ou de l’édition de la rivière par un utilisateur. Cela

signifie que l’utilisateur peut éditer les lits des rivières ou ajouter des ı̂les à la volée sans

interrompre l’animation. La vitesse de la rivière change dès que l’utilisateur en édite les

caractéristiques, et l’utilisateur peut auss modifier son apparence avec des textures.
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