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Abstract

Recently, it has become increasingly popular to represent animations not by means of a classical skeleton-based
model, but in the form of deforming mesh sequences. The reason for this new trend is that novel mesh deformation
methods as well as new surface based scene capture techniques offer a great level of flexibility during animation
creation. Unfortunately, the resulting scene representation is less compact than skeletal ones and there is not yet
a rich toolbox available which enables easy post-processing and modification of mesh animations. To bridge this
gap between the mesh-based and the skeletal paradigm, we propose a new method that automatically extracts
a plausible kinematic skeleton, skeletal motion parameters, as well as surface skinning weights from arbitrary
mesh animations. By this means, deforming mesh sequences can be fully-automatically transformed into fully-
rigged virtual subjects. The original input can then be quickly rendered based on the new compact bone and skin
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representation, and it can be easily modified using the full repertoire of already existing animation tools.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism:Animation 1.4.8 [Image Processing and Computer Vision]: Scene Analysis:Motion

1. Introduction

Recently, a variety of deformation-based approaches have
been proposed that enable skeleton-less generation of com-
puter animations [BSO08]. This change of paradigm in an-
imation production has been flanked by the appearance of
new tracking approaches in computer vision that enable op-
tical motion capture of arbitrary subjects using deformable
meshes rather than rigid body hierarchies [dATSS07a]. Both
of the above developments suggest that purely mesh-based
animation representations have developed into an ever more
popular alternative to kinematic hierarchy-based animations.

Unfortunately, although mesh-based approaches pro-
vide greater flexibility at the time of animation creation
than skeleton-based algorithms, they output more space-
consuming dynamic scene representations comprising of in-
dependent position data streams for every vertex. A further
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disadvantage is that animators are used to a large repertoire
of tools for editing and rendering traditional skeletal anima-
tions, but yet lack the same set of tools for working with
mesh-based dynamic scene representations.

Xu et al. [XZY*07] propose to close this gap by introduc-
ing a set of mesh-based operations to post-process surface
animations in a similar manner as kinematic representations.
Although their method allows for flexible post-processing of
time-varying surfaces, it requires a fundamental redesign of
existing animation tools and also does not explore data com-
paction possibilities. The latter was the focus of the work
by James et al. [JTO5] who aim at extracting a skinning
representation from mesh sequences that is well-suited for
rendering on graphics hardware but not meant to be used for
editing.

In contrast, we propose a method that enables the fully-
automatic conversion of an arbitrary mesh animation into a
skeleton-based animation. Given as input a deforming mesh
with constant surface connectivity, our algorithm first ex-
tracts a plausible kinematic bone hierarchy that closely re-
sembles a skeleton hand-crafted by an animator, Sect. 4 and
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Figure 1: From left to right: Input animation, color-coded distribution of blending weights, and two poses of the input re-

generated based on our skeleton-based version.

Sect. 5. Thereafter, our algorithm automatically infers joint
motion parameters, Sect. 6, and estimates appropriate sur-
face skinning weights, Sect. 7, to attach the skeleton to the
surface. The output of our algorithm is a fully-rigged skeletal
version of the original surface-based input. We show results
obtained with a variety of mesh animations, and also prove
the faithfulness of the reconstructed skeletal representations
to ground truth input, Sect. 8. In summary, our algorithm

e cnables fully-automatic extraction of skeleton structure,
skeletal motion parameters and surface skinning weights
from arbitrary deforming mesh sequences, and

e thereby enables easy post-processing and fast rendering of
mesh animations with standard skeleton-based tools with-
out having to modify them.

As opposed to related methods our approach jointly pro-
duces a compact and easily modifiable skeletal version
(Fig. 1), enables fast and accurate rendering of the original
input, enables easy generation of new pose sequences for
the input subject, and achieves all this without requiring any
modification to already existing animation tools.

2. Related Work

In our work we jointly solve a variety of algorithmic sub-
problems by extending ideas from the research on mesh seg-
mentation, skeleton reconstruction, motion estimation, char-
acter skinning and pose editing. For the sake of brevity, we
refer the interested reader to overview articles on motion es-
timation [Pop07] and mesh segmentation methods [Sha08],
and in the following highlight selected related papers from
the other categories.

2.1. Skeleton Reconstruction

Different ways for performing skeleton extraction, each of
them tailored to a specific data type and application, have
been proposed in the literature. Some approaches extract
skeletons from static meshes [KT03, LKA06, SLSKO07] to
gain information on topology or to perform segmentation.
Thus, extraction of an animation skeleton is not the goal.

The accurate extraction of kinematically and biologically
plausible animation skeletons is of great importance in op-
tical motion capture, where the skeletal structure needs to

be inferred from marker trajectories [KOFO05, dATS06] or
shape-from-silhouette volumes [dATM™04]. Similarly, kine-
matic skeletons can be reconstructed from a set of range
scans of humans [AKP*04] or CT scans of the human
hand [KMO4]. Recently, Aujay et al. [AHLDO7] and Schae-
fer et al. [SY07] have proposed methods to extract plausible
human animation skeletons from a static surface mesh of a
character, for instance by using prior knowledge about the
anatomy of humans and animals.

In contrast, in our setting we explicitly make use of mo-
tion information to extract kinematic hierarchies more ro-
bustly. Our algorithm creates a plausible animation skeleton
that best explains the data and that closely resembles a skele-
ton designed by an animator (in case such a skeleton exists
for the data set).

2.2. Character Skinning

Skinning or enveloping is the problem of mapping the artic-
ulated motion of the skeleton to deformations of the charac-
ter’s surface. Due to its efficiency, ease of implementation
and support in many commercial packages, the most widely
used enveloping method is linear blend skinning [LCFOO].
Unfortunately, standard linear blending has a limited model-
ing power and cannot reliably reproduce certain effects, such
as muscle bulging. More recent blending weight estimation
schemes look at several example poses and suggest meth-
ods to overcome the limitations inherent to linear blending.
Wang et al. [WP02] suggest the use of multi-linear blend-
ing weights, Mohr et al. [MGO3] suggest selective adding of
bones to increase reconstruction faithfulness, and James et
al. [JTOS5] suggest to use affine transformations.

In a different line of thinking, researchers recently sug-
gested to use the motion of a kinematic skeleton to ex-
press constraints for a surface deformation method like
a Laplacian deformation [YBSO07] or a Poisson deforma-
tion [WPP07]. By this means, convincing animations can be
obtained as one can capitalize on the full modeling flexibility
of a more complex mesh deformation approach.

Recently, Baran et al. [BPO7] have proposed a new ap-
proach that bears some similarity with our method. They
jointly fit a template skeleton to a static character mesh and
automatically compute appropriate skinning weights. In con-
trast to their method, our approach extracts a subject-specific
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Figure 2: Overview of our algorithm: using an animated mesh as input, our approach segments the model into plausible
approximately rigid surface patches (shown in different colors), estimates the kinematic skeleton (joints shown in red) and its
motion parameters, and calculates the skinning weights connecting the skeleton to the mesh. The output is a skeleton-based

version of the input mesh animation.

skeleton without knowing the structure a priori, and it does
so by analyzing the input motion of the mesh. Still, we cap-
italize on their blending weight computation, but in contrast
to their original idea, apply it to a whole series of poses in
order to obtain weights that more faithfully approximate the
input.

2.3. Pose and Animation Editing

Similar in spirit to our algorithm are methods that edit mesh-
based deformations directly based on spatio-temporal mesh
editing operators rather than by transforming the input into
a skeletal representation [XZY*07,KG06]. While the flexi-
bility of these methods is very high and the resulting edited
animations are of high visual quality, these methods require
a fundamental redesign of existing animation tools and they
don’t explore data compaction possibilities. However, in par-
ticular when the mesh animation can well be explained by a
skeleton, our approach to transform a mesh animation into
a skeletal one is advantageous, as it enables fast and easy
post-processing using the full spectrum of already existing
software.

A first step in this direction was taken in [SYO7] where
a skeleton and skinning weights are estimated from a set of
example poses. The main differences to our method are that
we exploit the full motion information in the input to ro-
bustly learn a skeleton by means of spectral clustering, that
we get a full range of skeletal motion parameters for the in-
put animation which gives us much greater flexibility during
post-processing, and that we fit our skinning weights to the
entire range of animation frames which leads to more reli-
able estimates.

In summary, while many related approaches from the lit-
erature propose alternative methods to solve subproblems of
our setting, our method outputs a fully-parameterized skele-
tal version of the input mesh animation that can either be
rapidly rendered without modification or easily be modified
using standard tools.
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3. Overview

An overview of our approach is shown in Fig. 2. The input
to our algorithm is an animated mesh sequence comprising
of N frames. We represent an animated mesh sequence by
a mesh model M = (V = vertices,T = triangulation) and
position data p;(v;) = (xj,y;,z;)r for each vertex v; € V at
all time steps 7. By using the coordinate sets Pr = {p:(v;)}
and the mesh M we are able to completely describe our time-
varying animated model.

In the first step of our algorithm we employ spectral clus-
tering to group seed vertices on the mesh into approximately
rigid segments. By using the clustered seed vertices we are
then able to segment the moving mesh into kinematically
meaningful approximately rigid patches, Sect. 4. Thereafter,
adjacent body parts are determined and the topology of the
kinematic structure of the mesh is found, Sect. 5. Using the
estimated topology, joint positions between interconnecting
segments are calculated over time. In order to eliminate tem-
poral bone length variations due to per-time step fitting inac-
curacies, joint positions are updated at all time steps and an
inverse kinematics approach is applied to determine the sub-
ject’s joint parameters over time, Sect. 6. In a last step we
calculate appropriate skinning weights to attach the learned
skeleton to the surface, Sect. 7. This way, we produce a com-
plete skeleton-based new version of the original input.

4. Motion-driven Segmentation

The first step of our algorithm segments the animated input
mesh (given by M and F;) into spatially coherent patches that
undergo approximately the same rigid transformations over
time. We initialize our approach by selecting a subset of /
vertices that are distributed evenly over the mesh M. For the
selection of the seeds we only consider a reference pose P,
(typically ¢ = 0), and employ a curvature-based segmenta-
tion method [YGZSO05] to decompose the model into / sur-
face patches. The seed vertices are chosen as the vertices
closest to the centers of the patches. We typically choose /
to be in the range of 0.3 — 1.0% of the total vertex count of
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the model, which enables reasonably fast decomposition of
even large meshes.

Similar to [KOF05,dATS06] in the context of optical mo-
tion capture and [TRAASO7] for volumetric segmentation,
the motion trajectories of the seed vertices throughout the
whole sequence form the input to a spectral clustering ap-
proach [NJWO02] which automatically groups the / seeds into
k approximately rigidly moving groups. We capitalize on
the invariant that mutual distances between points on the
same rigid part should only exhibit a small variance while
the mesh is moving.

In order to use spectral clustering we first construct a
spatial affinity matrix A. We developed an affinity criterion
specifically for our setting that defines the entries of A as
follows:

i j+\/Pi)

Ajj=e s, (D

where p;; = ﬁ Y, 8(vi,vj,t) is the mutual Euclidean
distance §;;, between seed vertex v; and seed vertex
vj over time and o;; is its standard deviation. § =
ﬁ Y (0ij+/Pij) is a scaling term controlling the con-
vergence behavior. We construct the entries of A such that
the affinity values of vertex pairs with large average mutual
distance is reduced, which forces our spectral clustering al-
gorithm to put spatially far apart groups of vertices with sim-
ilar motion into separate clusters.

Spectral clustering is our method of choice as it can ro-
bustly infer complex cluster topologies as they are typical
for our motion segmentation problem. Instead of grouping
the vertices directly based on the individual values A; ;, spec-
tral clustering uses the top eigenvectors of matrices derived
from A to cluster the vertices (for details see [NJWO02]). This
makes the clustering more robust against outliers and leads
to a more robust and kinematically more meaningful seg-
mentation. As an additional benefit, the optimal number of
clusters k can be automatically calculated based on the data
set’s eigen-gap. In our system, we automatically cluster the
seeds into k groups such that around 99.0% of the total vari-
ation of the data is explained.

Using the k optimal vertex clusters, we create triangle
clusters Ty... Ty = T by assigning each triangle A =
(wo,wi,wz) € T to the closest seed vertex class consider-
ing the average Euclidean distance from a seed vertex vy
to wg, wy, and wy. The resulting clusters divide the mesh
into k approximately rigid surface patches, Fig 3. Note that
although a structurally motivated distance measure like the
geodesic distance could also be used for clustering the trian-
gles and to determine affinities in Eq. (1), our experiments
show that similar results can be achieved using simple Eu-
clidean distance which reduces the algorithm’s computation
time considerably.

Figure 3: Approximately rigid surface patches shown in dif-
ferent colors.

5. Automatic Skeleton Extraction

Given the list of body segments, their associated seed ver-
tices and triangle patches, we extract the kinematic skele-
ton structure of the animated mesh by first finding its kine-
matic topology (i.e. find which body parts are adjacent) and,
thereafter, by estimating the positions of the interconnecting
joints for the whole sequence.

To determine which body segments are adjacent, we an-
alyze the triangles at the boundaries of the triangle patches.
Body parts A and B are adjacent if they have mutually adja-
cent triangles in their respective patch boundaries. Unfortu-
nately, in practice a patch may be adjacent to more than one
other patch. If more than two patches are directly connected
(e.g. head, torso and arm), we need to decide which seg-
ments are truly kinematically connected and which are not.
Here we take a heuristic approach and consider only those
patches to be adjacent that share the longest common bound-
ary (in terms of the number of adjacent boundary triangles).
For instance, if head, arm and torso are connected we calcu-
late the number of neighboring triangles for all combinations
of patch pairings (e.g. head-torso, head-arm and torso-arm)
and do not assign the pair head-arm as an adjacent segment
since it has less neighbors in comparison with the other two
options. For any adjacent pair of patches, a joint has to be
found later. Note that in our system we assume that the body
part in the center of gravity of the mesh at the reference time
step is the root of the hierarchy.

In order to estimate the joint positions between two adja-
cent body segments A and B quickly, we only consider the
information from the sets of seed vertices V4 and Vp located
on these segments, and not the information from all vertices
of V. Instead of solving for the complete sequence of joint
positions, we significantly reduce the problem’s complexity
by first aligning the segment poses to a reference time step
tr (usually rr = 0), then solving for a single optimal joint po-
sition at ¢y, in the reference pose, and finally retransforming
cr into the original poses of A and B. To serve this purpose,
for each time step ¢ we first compute two rigid body trans-
forms Ty, , and Tp,_, that align the positions of the seed
vertices in both sets with the positions of the seed vertices
V4 at the reference time step [Hor87].

For finding ¢;» we follow an idea proposed in [KOFO05]
and assume that a good estimate for the correct sequence of
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joint positions is the sequence of locations that minimizes
the variance in joint-to-vertex distance for all seed vertices
of the adjacent parts at all frames. Using this assumption,
[dATS06] solves for the joint location at the reference time
cir by using a distance penalty based on the average Eu-
clidean distance to regularize the solution. Alternatively, we
use the regularization term proposed by [AKP*04], which
makes the estimated joint position come closer to the cen-
troid position b; of the boundary curve between the two ad-
jacent body parts at all time steps 7. Therefore, we solve for
¢ by minimizing:

1 1
J(Ctr) = 5 * Z (o] (Ctr) + E * Z Oy (Ctr) +a*d(ctr,btr)
Ve €Va v EVE
@)

where 64(c;r) and 65 (csr) corresponds to the Euclidean dis-
tance variance over time between the joint position ¢;- and
the vertex vq and between ¢;r and vy, respectively. d(ctr, brr)
is the Euclidean distance between ¢ and by, at the reference
time step. The coefficient o is used to regularize the solution,
making the joint position be located as closed as possible to
the interior of the mesh. The results in Sect. 8 were generated
using a value of o0 = 0.05 (which we found to be satisfactory
in our experiments).

After solving Eq. 2 and finding the optimal joint location
¢rr, the joint positions at all other frames can be easily com-
puted by ¢; = TATL, * ctr. By applying the above procedure
to all adjacent body parts we reconstruct all joint positions
for the whole sequence (see Fig. 4).

6. Motion Parameters Estimation

A consistent parameterization of the skeletal motion in terms
of joint parameters is only feasible in case the skeleton struc-
ture has constant dimensions over time. However, due to
possible errors generated by aligning the body parts in the
reference frame (mostly caused by subtle (non-rigid) relative
motion between vertices on the same segment) the lengths
of the bones in the skeleton may slightly vary over time. We
enforce the bone lengths to be constant by stepping through
the hierarchy of the estimated skeleton from the root down
to the leaves and correcting the joint positions for each pair
of subsequent joints in the kinematic chain separately.

Let ¢! be the position of a joint i and cf_] the position of
its parent joint at time ¢. We are able to calculate the optimal
value for the length of the bone connecting joint i — 1 and i,

li—1., over time and the new positions for the joints i, ncf N
by minimizing the following energy:
S(nc' iy ;) = (3)

N
. - C il )
Y llet = nci|” + (llnc; — et | = lim1.1)"-
=0
The first term in Eq. (3) keeps the new joint position nc,é as
close as possible to the old position, while the second term
constrains the bone length to be the same in all frames.
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Figure 4: (upper) Visual comparison between the recon-
structed joint positions and the true positions (shown as
white spheres) at four different frames. (lower) Plot of the
low difference in z-coordinate between the reconstructed left
elbow joint position and the ground truth position over time
(biped walking sequence).

After solving this equation for each pair of subsequent
joints in the hierarchy we obtain a consistent kinematic
structure of the mesh M. To infer joint motion parameters,
i.e. a rotational transformation 7y for all joints i at all times
t, we first specify the skeletal pose at the first time step as ref-
erence pose (this is the best we can do given no explicit ref-
erence). Thereafter, we apply a Cyclic-Coordinate-Descent
(CCD) like algorithm [Lue73,BMB87] to infer all T,i relative
to the reference using Euler angle parameterization. To this
end, we optimize one joint variable at a time by calculating
the positional error w.r.t the estimated joint positions found
for that time step. Since we have all in-between joint po-
sitions of each kinematic sub-chain, our method converges
quickly and reliably. Finally, the translation of the root is
stored as additional parameter for each frame.

7. Skinning Weight Computation

Skinning is the process of attaching the skeleton to the sur-
face in such a way that changes in skeletal pose lead to plau-
sible surface deformations. Although more advanced de-
formation schemes exist, Sect. 2.2, we decided to use the
standard linear blend skinning method [LCF00] (also called
skeletal subspace deformation method - SSD) since it is
widely supported in games and animation packages.

Let po(v;) be the position of the vertex v; of M in the
reference pose (or rest pose), let T,b be the transformation
of the bone b from the reference to time 7, and let w’(v;)
be the weight of the bone b for the vertex v;. Note that the
bone transformation 7’ equals the transformation 7, of the
preceding joint j from the hierarchy. SSD expresses the new
position of vertex v; at time 7 as p;(v;) = ¥, (W T po(vi)).
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Therefore, in order to use the SSD method to re-animate the
sequences using a more compact representation, we need to
determine the bone weights wf’ for each vertex v;, i.e. we
need to know how much each bone influences each vertex.

Although alternative approaches for skinning weight
computation are available in the literature, we employ
the method proposed in [BPO7] to determine the skinning
weight distribution for each bone. This method computes the
distribution based on the results of a heat diffusion process
rather than based on simple vertex proximity to the bone,
which makes the estimation process more robust. In contrast
to their work, however, we consider the entire sequence of
mesh and skeleton poses from the input when finding opti-
mal weights. In particular we first solve for the weight distri-

butions W? of each frame f separately, and thereafter average
b

them to obtain the final distributions w”.

When computing the weight distribution w? we regard the
character volume as an insulated heat-conducting body and
force the temperature of the bone b to be 1 and the tem-
perature of all others to be 0. The weight w?(v,-) equals the
equilibrium temperature at v;. For computational simplicity,
the equilibrium equation is only solved on the mesh’s sur-

C . owh .
face yielding % = Awfc +Hy( p? — w[}) = 0. In our discrete
case this can be reformulated as

(—Ag+Hp)wh = Hyph. )

In this equation, A, is the discrete Laplacian operator at
frame f [WMKGO7], pl)’c is a vector where p?(vi) equals 1in
case b is the nearest bone to vertex v; and 0 otherwise. Hy is
a diagonal matrix with entries H;; = 1/dist(v;)? representing
the heat contribution weight of the nearest bone to vertex v;
at frame f. Here, dist(v;) is the Euclidean distance between
vertex v; and the nearest bone in case it is contained in the
character’s volume and 0 otherwise. The final weight distri-
butions w” for each bone is the average of the weights wf«
for all frames.

The heat diffusion solution provides smooth and realistic
blending weight distributions since it respects geodesic sur-
face proximity during weight assignment rather than error-
prone Euclidean proximity [BPO7]. Furthermore, our exper-
iments show that by computing the optimal weights from all
available poses our skeletal animation more faithfully repro-
duces the entire original mesh animation.

8. Experiments and Results

To demonstrate and validate our algorithms, we applied it to
a set of mesh animations generated in a variety of different
ways, see Tab. 1 for a list. Some synthetic sequences, such as
the horse sequence, Fig. 1, were generated with a mesh de-
formation method [SP04]. Other synthetic sequences like the
bird and the walking biped (see video) were originally cre-
ated with a skeleton-based method which conveniently gives

Figure 5: Visual comparison between pre-defined skeleton
embedded using [BPO7] (1) and the skeleton extracted by our
approach (r). Despite slight differences in the torso area, our
estimated skeleton closely resembles the fitted template.

us ground truth data. We also have captured performances
of humans at our disposition. The dancing and capoeira se-
quences, Fig. 6 and Fig. 8, were reconstructed by a mesh-
based marker-less motion capture approach [dATSS07a].
The cartwheel and posing sequences (Fig. 8 and video) were
obtained by using raw motion capture marker trajectories as
constraints in a deformation approach [dATSS07b].

Fig. 8 shows one original input mesh, the color-coded
skinning weight distributions, and some poses of the
original animation re-rendered using our skeleton-based
reparametrization. A visual comparison between our result
and the input, see Fig. 6 and several examples in the accom-
panying video, shows that our result is visually almost indis-
tinguishable from the original mesh animation and exhibits
very natural surface deformations. Furthermore, visual in-
spection already suggests that the estimated kinematic struc-
tures are nicely embedded into the subjects at all frames and
possess biologically plausible dimensions and hierarchies.
Here, we would like to note again that all these results were
obtained fully-automatically. Our new representation is very
compact. For the horse animation, for instance, we only need
to store geometry and skinning weights once, and for each
time step only store 60 motion parameters (3-DOF per joint)
rather than approx. 25000 coordinate values.

To get a quantitative impression of the faithfulness and
quality of our results, we analyze individual aspects of our
method more closely.

Skeleton Reconstruction Since for most synthetic data we
know the true sequence of joint positions, we are able to
provide a quantitative estimate of the accuracy of our skele-
ton extraction and motion capture approach. Fig. 4(upper)
shows a visual comparison between the joint positions esti-
mated by our approach and the true joint positions, shown as
white spheres, for the walking biped sequence. Fig. 4(lower)
illustrates the accuracy of the reconstructed motion param-
eters over time. The plot shows a comparison between the
z-coordinate of the true and estimated positions of the left
elbow joint for the same walking sequence. The difference
between true and estimated joint positions is very small and
consistent which illustrates the robustness of our method.
Similar low errors could be observed in all our sequences
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Figure 6: (left) Two pairs of images comparing the input (left sub-image) to our skeleton-based result (right sub-image). In
either case the renderings are visually almost indistinguishable. (right) Plot showing the low average Euclidean distance error
between input and reconstructed vertex positions for the human-sized model.

with available ground truth. The column JACC in Tab. 1
shows the average Euclidean distance error between esti-
mated joint position and true joint position for all joints over
time. Due to the lack of absolute coordinates, the error is
given in percent of the longest bounding box (B.B.) dimen-
sion of the model. In all our examples, major misalignments
between the original and the reconstructed skeleton could
only be found if the part of the input corresponding to that
joint was not prominently articulated.

Our automatically computed bone hierarchies closely
match the skeletons that would typically be created by an-
imators. This is shown in the comparison in Fig. 5 where
we show side-by-side our result and the result of fitting
a template kinematic model with the method of Baran et
al. [BPO7]. Only the topology of the root/spine area slightly
differs.

Accuracy of reparameterized animation Fig. 6(left)
shows a comparison between two frames of the input danc-
ing sequence (left sub-images) and the generated skeleton-
based animation (right sub-images). Visually, almost no dif-
ference can be seen. The faithful reproduction of the original
input is also shown in the accompanying video.

Fig. 6(right) plots the consistently low average difference
between the vertex positions of the input and the reparam-
eterized output over time for the dancing sequence. For the
human-sized figure, the error is mostly below one centime-
ter which shows the high reconstruction quality also quanti-
tatively. Column ACCU of Tab. 1 shows that similarly low
errors are observed in the other test sequences.

Pose and animation editing Using our system, we are able
not only to recreate the original input based on a more com-
pact representation, but can straightforwardly produce novel
postures of the input mesh, see Fig. 7. To this end, we only
need to modify the joint parameters which can easily be done
in any standard animation package. Since we have a com-
plete set of motion parameters for the input, we can also eas-
ily modify aspects of the original animation by altering the
joint parameter curves of selected joints (see accompanying
video).

Computation time Tab. 1 lists the run times of each pro-
cessing step in our algorithm. The second and third columns
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Figure 7: New poses for the input mesh can be easily gener-
ated by simply changing the joint parameters of the extracted
skeleton.

show the number of frames in each sequence (FRAMES)
and the number of triangles in each model (NUMTRI). The
column SEGM lists the time needed for clustering and mesh
segmentation. Column SKEL lists the time needed to build
the skeleton and estimate all motion parameters, and col-
umn SKIN lists the time needed to find the blending weights.
With the exception of SKIN which shows per-frame times,
all times given are for processing entire sequences. All run
times were measured on a Laptop featuring an Intel Core
Duo CPU with 1.7 GHz.

Discussion Our approach is subject to a few limitations.
During skeleton extraction, it is impossible to locate a joint
if there is no relative motion between adjacent body parts.
Therefore, in some of our sequences hands and feet are
missed due to insignificant relative motion. However, we
consider this to be a principal problem of any data-driven
skeleton extraction method, and user interaction is feasible
in this case.

Most remaining reconstruction inaccuracies are due to
non-rigid deformation components in the input that are not
well explainable by a rigid skeleton and linear skinning
weights. As part of future work, we plan to investigate if
alternative skinning methods lead to an even further reduc-
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SEQUENCE | FRAMES | NUMTRI | SEGM | SKEL SKIN JACC ACCU
Horse 47 17K 4s 17s 7s/frame N/A 0.56% of B.B.
Bird 60 55K Ss 49s 10s/frame | 2.9% of B.B. | 0.42% of B.B.
Biped 80 32K Ss 36s 14s/frame | 1.7% of B.B. | 0.52% of B.B.
Cartwheel 120 7K 4s 63s 3s/frame N/A 0.81% of B.B.
Posing 280 7K 9s 261s 4s/frame N/A 0.43% of B.B.
Capoeira 150 106K 44s 244s | 28s/frame N/A 0.47% of B.B.
Dancing 220 106K 37s 312s | 28s/frame N/A 0.37% of B.B.

Table 1: Given an animated mesh sequence with T triangles (NUMTRI) and N frames (FRAMES), the processing times for
segmenting the mesh into triangle patches (SEGM), to extract its kinematic structure and reconstruct its motion parameters
(SKEL), and to calculate the skinning weights based on the input data (SKIN) are shown. Also, the low average difference
between estimated joint positions and true joint locations - in percent of the maximal side length of the overall bounding box
(JACC) and the average difference between original and reconstructed vertex position (ACCU) are indicated.

tion of the residual errors, e.g. [MMGO06, KCZO07, AS07,
WPPO7].

Furthermore, skeletal reparametrization works very well
for subjects whose motion is largely due to a skeleton such
as humans and most animals. In largely non-rigidly moving
animations, such as a deforming piece of cloth, our algo-
rithm would still determine a skeleton, but it is not physically
plausible. Therefore, mesh-based editing approaches might
be preferred in this case [XZY*07, KG06].

Despite these limitations, we have presented a simple,
practical, robust, and easy-to-implement approach to auto-
matically transform an arbitrary mesh animation into a fully-
rigged kinematic skeleton animation.

9. Conclusion

We presented a fully-automatic method to extract a kine-
matic skeleton, joint motion parameters, and surface skin-
ning weights from an animation of a single triangle mesh.
The result is a compact representation of the original in-
put that can be easily rendered and modified in standard
skeleton-based animation tools without having to modify
them in the slightest. This way, we are able to preserve the
great modeling flexibility of purely mesh-based approaches
while making the resulting skeleton-less animations straight-
forwardly available to the animator’s repertoire of process-
ing tools. Our results show that the efficient combination of
skeleton learning and temporally-coherent blending weight
computation enables us to effectively bridge the gap between
the mesh-based and skeleton-based animation paradigms.
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