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Wavelets and multiresolution Context

@ Process very complex discrete data
~» huge size/number

~+ complex shapes
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Wavelets and multiresolution Context

Examples

w10 Sound signal

05 1 15 2 2

Sound signal Image database

c: 9544

Medical imaging 3D object
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Wavelets and multiresolution Context

@ Process very complex discrete data
~» huge size/number

~+ complex shapes
@ Analyze these data sometimes globally, sometimes locally

@ Modify these data sometimes globally, sometimes locally
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Wavelets and multiresolution Context

Example
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Wavelets and multiresolution Context

What we need

Several level of details

A hierarchical representation of theses complex, discrete data

A multi-resolution analysis of the data
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Wavelets and multiresolution Context

Other possible applications

Data denoising and filtering

(Medical) image segmentation and feature detection
Data compression (MPEG-4)

Querying and matching (images, object reconstruction)
Real-time animation of deformable objects

from Gilles Debunne’s PhD thesis
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Wavelets and multiresolution Multiresolution analysis

@ Decompose a signal into raw signal + details
@ Same framework for several signals: 1D, 2D, 2D+t, 3D, ...
@ Signal can be approximated at different scales
~~ If i coarser than j, f; = f; + 6 j
@ Signal decomposition into and reconstruction from raw +
details at any scale can both be done in linear time

@ Most details are near zero = efficient compression
removing them
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Wavelets and multiresolution Multiresolution analysis

Multiresolution analysis

A multiresolution analysis of a set E is an infinite sequence of
nested subsets (V/);—_...;~ such that, among other things:
VjeZ Vic vt (1)
+o0
lim V/ = Vi={0 2
[im V= (] V= {0} @)
J=—00
. +OO
im V= U vi=E (3)
J=—00
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Multiresolution analysis

A multiresolution analysis of a set E is an infinite sequence of
nested subsets (V/);—_...;~ such that, among other things:
VjeZ Vic vt (1)
+o0
lim V/= Vi={0 2
[im V= (] V= {0} @)
J=—00
. +OO
i v 'U Vi=E (3)
J=—00

A\

What does that mean ?

(1): signal approx. at high scale is approx at low scale + details
(2): when scale gets coarser and coarser, information gets lost
(3): with approx. at all scales, signal can be fully recovered
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Wavelets and multiresolution Example: Haar wavelets

1D Haar transform

@ Input: signal = sequence of N = 2" values (U;)o<i<n-1

@ What we want: to decompose the signal into one mean
value + details

@ How to do that:

o Recursively replace tpx and upiq by 2t

o Keep as detail uy, — 2ot — Lot
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Example
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Wavelets and multiresolution Example: Haar wavelets

Discussion

@ Def.: Wavelet transform of the signal = mean value
followed by details in order of increasing resolution

@ Decomposition and reconstruction can both be done in
O(n) time

@ Mean value + all details = exactly nterms stored in
memory

@ No information is lost or created during the process

@ Application to compression: remove details ~ 0
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Wavelets and multiresolution Example: Haar wavelets

1D Haar basis functions

@ From the discrete to the continuous space:
now signal = piecewise-constant function on [0, 1]

@ V0 = vector space of constant functions on [0, 1]

@ V' = vector space of constant functions on [0, 3[ and on
2.1l

@ V2 = vector space of constant functions on [0, ;[, on [1, 3[,
on[3,2[andon [3,1]

@ efc.

@ (V/) are nested vector spaces: VO c V! c V2 ...
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Wavelets and multiresolution Example: Haar wavelets

1D Haar basis functions

@ Basis functions of each V/: box functions
#(x) = p(@x —i),i=0...2/ —1
with

1 forO<x <1
9(x) = { 0 otherwise

@ These functions are called scale factors
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Wavelets and multiresolution Example: Haar wavelets

Exercise

Draw the basis functions of V2.
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Exercise

Draw the basis functions of V2.

Solution:

| | ﬂ | ﬂ | ﬂ
> R R L1

ol i 1 ol i 1 ol i 1 ol 21
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Wavelets and multiresolution Example: Haar wavelets

Orthogonality

Definition (Inner product)

;
Forf,g: VI =R, < flg >= / f(x)g(x)dx.
0

Definition (Orthogonality)
f and g are orthogonal if < f|g >= 0.

Property

Vj, the basis (¢>f,:) i—o. i1 Of VI is orthogonal (i.e. the qs/, are
orthogonal in pairs).
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Wavelets and multiresolution Example: Haar wavelets

Wavelets

Definition (Orthogonal supplement of V/ in V/+1)

W/ = space of all functions in V/*' which are orthogonal to all
functions in V/. We write V/ @ W/ = V/t+1,

Definition

Basis functions ¢/ of W/ are called wavelets.

Property

(ij,:)i:o...zfq U (w{:)i:o...zfq is a basis of VI*1.
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Wavelets and multiresolution Example: Haar wavelets

Exercise

Find Haar wavelets for W1.
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Exercise

Find Haar wavelets for W1.

Solution:

Y

,___
o
1
—_
=
)
\

0 1‘2
-1 —1
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Wavelets and multiresolution Example: Haar wavelets

Exercise

Find Haar wavelets for W1.
Solution:
A A

—1

1 foro<x<j
P(x) =4 —1 forf <x<1
0 otherwise
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Wavelets and multiresolution Example: Haar wavelets

Back to first example
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Wavelets and multiresolution Example: Haar wavelets

Haar basis

Property
Since Vi @ Wi = Vit we have

Vi =Vl Wl e W ... W
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Wavelets and multiresolution Example: Haar wavelets

Haar basis

Property

Since Vi @ Wi = Vit we have

Vi =Vl Wl e W ... W

Definition (Haar basis)

The Haar basis of V/*' includes ¢J (basis function of V), 3
(basis function of W?), 1)}, 41 (basis functions of W1), ...,
Uh,.... Y%, (basis functions of W/).
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Wavelets and multiresolution Example: Haar wavelets

Haar basis

Property

Since Vi @ Wi = Vit we have

Vi =Vl Wl e W ... W

Definition (Haar basis)

The Haar basis of V/*' includes ¢J (basis function of V), 3
(basis function of W?), 1)}, 41 (basis functions of W1), ...,
Uh,.... Y%, (basis functions of W/).

F(x) = p(2x — )
(x) = v(2Ix - i)
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Wavelets and multiresolution Example: Haar wavelets

Orthonormal Haar basis

Property
Any Haar basis is orthogonal.

Property

A Haar basis can be normalized (i.e., Yu in this basis,
< ulu >= 1) if we replace previous definitions with

@ (x) = Vaig(2x — i)

Yl(x) = Vaip(2lx — i)

Mathematical tools 1 - Session 3



Wavelets and multiresolution Example: Haar wavelets

Wavelet decomposition

procedure Decomposition(c: array[1..2/] of reals)
¢ = ¢/v/2; // normalize input coefficients
g := 2/; // size of data to decompose
while g > 2 do
DecompositionStep(c[1..9]);
g:=9/2;
end while;
end Decomposition;

procedure DecompositionStep(c: array[1..2/] of reals)
fori:=1to2/~"do
c’li] := (c[2*%i-1]+¢[2*])/v/2; // mean value
c'[2~1+i] = (c[2*i-1]-c[2*])/\/2; // detall
end for;
c:=C
end DecompositionStep;
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Wavelets and multiresolution Example: Haar wavelets

Reconstruction

procedure Reconstruction(c: array[1..2/] of reals)
g = 2; // size of data to reconstruct
while g < 2/ do
ReconstructionStep(c[1..9]);
g:=2"g;
end while;
¢ = ¢*vV2/; // undo normalization
end Reconstruction;

procedure ReconstructionStep(c: array[1..2/] of reals)
fori:=1t02-"do
c[2%i-1] := (c[i]+c[2/ T +i])/V2;
c[24] := (cli]-c[2/ " +i])/V2;
end for;
c:=C};
end ReconstructionStep;
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Wavelets and multiresolution Example: Haar wavelets

Wavelet compression

A e S

16 out of 16 coefficients 14 out of 16 coefficients
12 out of 16 coefficients . 10 out of 16 coefficients

8 out of lﬁrénwéﬁ;;ien[s 6 out of 16 coefficients
4out of 16 cu(zﬁiclcn;s ----- 2 out of Iﬁrmrrfﬁuem.\

Algorithm: sort coefficients in decreasing order, remove lasts
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Wavelets and multiresolution Example: Haar wavelets

Haar wavelets for images

@ 2 ways to decompose an image:
@ Standard decomposition: first decompose rows, then
columns
© Nonstandard decomposition: alternate between row and
column decomposition
@ Also for reconstruction
@ Advantages:
@ Standard: only 1D transforms are performed
o Nonstandard: more efficient (8(n? — 1) assignment
operations instead of 4(n? — n)).
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Wavelets and multiresolution Example: Haar wavelets

Standard decomposition

procedure StandardDecomposition(c: array[1..2/,1..2X] of reals)
for row := 1 to 2/ do
Decomposition(c[row,1..2X]);
end for;
for col := 1 to 2¥ do
Decomposition(c[1..2/,col]);
end for;
end StandardDecomposition;

procedure StandardReconstruction(c: array[1..2/,1..2¥] of reals)
for col:= 1 to 2¥ do ‘
Reconstruction(c[1..2/,col]);
end for;
for row := 1 to 2/ do
Reconstruction(c[row,1..2K]);
end for;

end StandardReconstruction;
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Wavelets and multiresolution Example: Haar wavelets

Standard decomposition

transform rows

transform
columns
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Wavelets and multiresolution Example: Haar wavelets

Nonstandard decomposition

procedure NonstandardDecomposition(c: array[1..2/,1..2%] of reals)
¢ := ¢/2; // Normalize input coefficients
g:=2;
while g > 2 do
for row :=1togdo
DecompositionStep(c[row,1..9]);
end for;
forcol .=1togdo
DecompositionStep(c[1..g,col]);
end for;
g =0/2;
end while;
end NonstandardDecomposition;

procedure NonstandardReconstruction(c: array[1..2/,1..2X] of reals)

/[*** TO BE COMPLETED ***

end NonstandardReconstruction;
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Wavelets and multiresolution Example: Haar wavelets

Nonstandard decomposition

transform rows

transform
columns
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Wavelets and multiresolution Example: Haar wavelets

All stuff in this section (Haar wavelets) has been inspired by the
first chapter of the following book:

E. Stollnitz, T. DeRose, D. Salesin
Wavelets for Computer Graphics
Morgan Kaufmann, 1996
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Wavelets and multiresolution Example: Haar wavelets

See you next week

The end !
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Wavelets and multiresolution Subdivision curves and surfaces

Interpolation and approximation

9 Wavelets and multiresolution

@ Subdivision curves and surfaces
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