Mathematical tools 1 Session 2

Franck HÉTROY

M2R IVR, October 12th 2006

Mathematical tools 1 - Session 2

◆□▶ ◆□▶ ◆回▶ ◆回▶ ◆□ ◆ ④◆

### First session reminder

Motivation: interpolate or approximate an ordered list of 2D points *P<sub>i</sub>*

• Definition: spline curve: 
$$C(t) = \sum_{i=0}^{n} F_i(t)P_i$$

Interesting properties:

• Normality:  $\forall t, \sum_{i=0}^{n} F_i(t) = 1$  (affine/barycentric invariance)

- Positivity:  $\forall t, \forall i, F_i(t) \ge 0$  (convex hull)
- Regularity: ∀*i*, *F<sub>i</sub>* has a single max (oscillation regularization)
- Locality:  $\forall i, F_i$  has compact support
- Parametric/geometric continuity

◆□ ▶ ◆帰 ▶ ◆臣 ▶ ◆臣 ▶ ○

Splines: a gallery

## Interpolation and approximation



2 Wavelets and multiresolution

Mathematical tools 1 - Session 2

#### Splines: a gallery

### Decomposing a spline

We will look for uniform splines:

$$C(t) = \sum_{i=0}^{n} F_i(t) P_i = \sum_{i=0}^{n-1} C_i(n.t-i)$$

with  $C_i : [0, 1] \rightarrow \mathbb{R}^3$  polynomial in t

⇒ each  $C_i$  corresponds to a curve segment, defined for  $t \in [\frac{i}{n}, \frac{i+1}{n}] = [t_i, t_{i+1}]$ 



## Interpolation splines

Which parametric continuity ?

- $C^0 \Rightarrow$  control polygon !
- C<sup>1</sup>: shared derivatives D<sub>i</sub>

 $\Rightarrow$  4 conditions for each curve segment:

$$\left( \begin{array}{ccc} C_i(0) &=& P_i \\ C_i(1) &=& P_{i+1} \\ C_i'(0) &=& D_i \\ C_i'(1) &=& D_{i+1} \end{array} \right)$$

 $\Rightarrow$   $C_i$  = degree 3 polynomial:

 $C_i(t) = A + Bt + Ct^2 + Dt^3$ 

Splines: a gallery

## Cubic Hermite splines (first order)

If  $D_i$  are given,  $C_i(t)$  is uniquely determined:

$$\begin{cases} C_{i}(t) = H_{0}(t)P_{i} + H_{1}(t)P_{i+1} + H_{2}(t)D_{i} + H_{3}(t)D_{i+1} \\ H_{0}(t) = 1 - 3t^{2} + 2t^{3} \\ H_{1}(t) = 3t^{2} - 2t^{3} \\ H_{2}(t) = t - 2t^{2} + t^{3} \\ H_{3}(t) = -t^{2} + t^{3} \end{cases}$$

Problem: how do we compute D<sub>i</sub> values ?



Mathematical tools 1 - Session 2

Splines: a gallery

### Cubic Hermite splines (second order)

First idea: reinforce continuity  $\Rightarrow C^2$  continuity

 $\rightsquigarrow$  conditions:

$$\left( egin{array}{rcl} C_i(0) &=& P_i \ C_i(1) &=& P_{i+1} \ C_i'(1) &=& C_{i+1}'(0) \ C_i''(1) &=& C_{i+1}''(0) \end{array} 
ight.$$

⇒ if we have m + 1 points  $P_i$  (i.e. m curve segments), we have 4m unknown values (A, B, C, D for each  $C_i$ ) and 4(m - 1) + 2 equations (only 2 for the last segment) ⇒ we need 2 other conditions

Usually, we set

$$\begin{cases} C_0''(0) = 0 \\ C_{n-1}''(1) = 0 \end{cases}$$

Splines: a gallery

## Hermite splines (second order)

Property

For a Hermite spline of order 2, the D<sub>i</sub> values are given by:



#### Proof.

4 equations for each  $C_i \Rightarrow C_i$  is degree 3. Let  $C_i(t) = a_i + b_i t + c_i t^2 + d_i t^3$ . Solve the previous equations.

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Splines: a gallery

### Cardinal spline

Other idea: we want  $D_i$  parallel to  $P_{i-1}P_{i+1}$  (no condition on second derivative)



 $\rightsquigarrow$  conditions:

$$egin{array}{rcl} C_i(0) &=& P_i \ C_i(1) &=& P_{i+1} \ C_i'(1) &=& C_{i+1}'(0) \ C_i'(0) &=& k(P_{i+1}-P_{i-1}) \end{array}$$

(same k for all derivatives)

 $\Rightarrow$  each segment curve depends on 4 points:

 $P_{i-1}, P_i, P_{i+1} \text{ and } P_{i+2}$ 

#### Splines: a gallery

## Cardinal spline

Property

$$C_{i}(t) = (t^{3} t^{2} t 1) M_{card} \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{pmatrix}$$

$$M_{card} = \begin{pmatrix} -k & 2-k & -2+k & k\\ 2k & -3+k & 3-2k & -k\\ -k & 0 & k & 0\\ 0 & 1 & 0 & 0 \end{pmatrix}$$

### Property

A cardinal spline is normal, regular, local of order 4, and  $C^1$ -continous.

Historical background:

 early 1960s: first "numerically-controlled machines" in automotive industry

 $\Rightarrow$  need to design (smooth) curves and surfaces starting from a very few number of 3D points (esp. for coachbuilding)

- Pierre Bézier (Renault, 1960-1963): theoretical study and tests, conception of a whole system ("UNISURF")
- Paul de Faget de Casteljau (Citroën, 1958-1959): geometric algorithm
- Robin Forrest (Univ. Cambridge, 1972): link between both, popularization
- → to know more, see Christophe Rabut's webpage: http://www-gmm.insa-toulouse.fr/~rabut/bezier/

### Bézier curves

### Definition (Bézier curve)

 $\forall i, F_i(t) = B_i^n(t) = C_n^i t^i (1-t)^{n-i}$  (Bernstein polynomials). Remember that n + 1 is the number of control points.

#### Property

A Bézier curve is normal, positive, regular and  $C^{\infty}$ -continuous. Moreover, it goes through first and last points  $P_0$  and  $P_n$ .

#### Problems:

- a Bézier curve is not local
- the higher the number of control points, the higher the degree of polynomials
  - $\Rightarrow$  computation time and numerical stability problems

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

### de Casteljau's algorithm

- How can we compute points on a Bézier curve without doing all the computations ?
- Idea: divide each segment  $P_iP_{i+1}$ , creating a new point  $P_i^1 = tP_i + (1 t)P_{i+1}$ , then do the same with segments  $P_i^1P_{i+1}^1$ , etc.
- Example: *t* = 0.4



Splines: a gallery

### Piecewise Bézier curves

#### Definition (Piecewise Bézier curve)

If 
$$n = 3m + 1$$
,  $C(t) = \sum_{i=0}^{m-1} C_i(m.t-i)$  with  
 $\forall i \le m, C_i(t) = B_0^3(t)P_{3i} + B_1^3(t)P_{3i+1} + B_2^3(t)P_{3i+2} + B_3^3(t)P_{3i+3}.$   
That is to say,  
 $C_i(t) = (1-t)^3 P_{3i} + 3(1-t)^2 t P_{3i+1} + 3(1-t)t^2 P_{3i+2} + t^3 P_{3i+3}.$ 

#### Property

A piecewise Bézier curve is local of order 2, normal, positive, regular and  $C^0$ -continuous. It also goes through points  $P_{3i}$ .

### Problem: only $C^0$ -continuous

Solution: if  $\forall i \leq m, P_{3i+1} = 2P_{3i} - P_{3i-1}$ , then C<sup>1</sup>-continuous

- That means 1/3 of the points cannot be freely chosen
- If we want C<sup>2</sup>-continuity, the curve must be global

## **B-splines**

Goal: normal, positive, regular, local and  $C^2$ -continuous splines

### Property

The functions  $F_i$  are uniquely determined if we assess:

• normality: 
$$\sum_{i} F_i(t) = 1$$

- Iocality of order 4
- each F<sub>i</sub> is made of 4 curve segments, which are cubic polynomials
- C<sup>2</sup>-continuity between two successive cubic polynomials



### **B**-splines

#### Property



Compare to cardinal splines: pros and cons ?

### Particular cases

 If P<sub>i-1</sub>, P<sub>i</sub>, P<sub>i+1</sub> and P<sub>i+2</sub> are aligned, then the curve is locally a straight line

Splines: a gallery

Splines

• If  $P_{i-1} = P_i = P_{i+1}$  (triple point), then this point is interpolated by the curve

• If we want to interpolate first and last points  $P_0$  and  $P_n$ , we can add extra points  $P_{-1} = 6P_0 - 4P_1 - P_2$  and  $P_{n+1} = 6P_n - 4P_{n-1} - P_{n-2}$ 

Splines: a gallery

## B-splines of order k (= degree k - 1)

Previous were B-splines of order 4/degree 3 (cubic splines)

Definition (B-spline of order k, Cox-de Boor recursion formula)

 $F_i = B_{i,k}$ , defined by the following recursive formula:

$$\mathcal{B}_{i,1}(t) = \left\{egin{array}{cc} 1 & ext{if } t_i \leq t < t_{i+1} \ 0 & ext{else} \end{array}
ight.$$

$$B_{i,k}(t) = \frac{t-t_i}{t_{i+k-1}-t_i}B_{i,k-1}(t) + \frac{t_{i+k}-t}{t_{i+k}-t_{i+1}}B_{i+1,k-1}(t)$$

with  $\forall i = 0 \dots n, t_i \in [0, 1]$  and  $t_0 \leq t_1 \leq \dots \leq t_n$ 

### Property

A B-spline of order k is k-local and  $C^{k-2}$ -continuous. Each  $F_i$  is made of k curve segments, each of them being a polynomial of degree k - 1.

### de Boor's algorithm

- Generalization of de Casteljau's: construction of points on a B-spline curve
- What's different:
  - weights used to divide each segment P<sub>i</sub>P<sub>i+1</sub> vary;
  - not all control points are involved, only k + 1
- Weights are found with a triangular scheme using Cox-de Boor recursion formula

#### Example

Cubic B-spline, 11 control points (n = 10),  $\forall i, t_i = i/10$ . t = 0.45: we want to compute C(0.45). Cubic  $\Rightarrow$  4-local  $\Rightarrow$  only  $P_1, P_2, P_3, P_4$  involved



#### Splines: a gallery

## de Boor's algorithm

Property

$$a_i^j = \frac{t_{i+k-j}-t}{t_{i+k-j}-t_i}$$

#### Example



Mathematical tools 1 - Session 2

### **Beta-splines**

#### Definition (Beta-spline)

$$C_i(t) = (t^3 t^2 t 1) M_{beta}(\beta_1, \beta_2)$$

$$p(\beta_1,\beta_2) \begin{pmatrix} P_{i-1} \\ P_i \\ P_{i+1} \\ P_{i+2} \end{pmatrix}$$

- Generalization of B-splines
- $G^{k-2}$ -continuous instead of  $C^{k-2}$
- Two parameters β<sub>1</sub> and β<sub>2</sub>: bias and tension, to control slope and curvature

・ロット (雪) (日) (日) 日

Problem: with these splines we cannot draw some simple curves (e.g. conics, even a circle !)

 $\rightsquigarrow$  Piecewise polynomials as influence functions are not adequate

#### Example

N.U.R.B.S.

Circle C((0,0), 1): C(t) = (x(t), y(t))  $\Rightarrow$  cannot be represented using polynomials, otherwise  $x(t)^2 + y(t)^2 = 1$  is a polynomial in t $\rightsquigarrow C(t) = (\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2})$ 

### Idea: rather use rational polynomials

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

## N.U.R.B.S.

Definition (N.U.R.B.S. of order k)

$$F_i(t) = R_{i,k}(t) = \frac{w_i B_{i,k}(t)}{\sum_{i=1}^n w_j B_{j,k}(t)},$$

with  $w_i$  real numbers (weights, usually  $\ge 0$  – what happens if  $w_i = 0$ ?) and  $B_{i,k}$  the influence functions of the B-spline of order *k* having the same control points

- N.U.R.B.S. stands for Non Uniform Rational B-Spline
- B-splines are a special case of N.U.R.B.S. :  $\forall i, w_i = 1$
- $R_{i,k}$  are rational polynomials of degree k-1

< ロ > < 同 > < 回 > < 回 > < □ > <

|            | Splines | Splines: a gallery |
|------------|---------|--------------------|
| N.U.R.B.S. |         |                    |
|            |         |                    |

### Property

A N.U.R.B.S. curve of order k is normal, positive, regular, k-local and  $C^{k-2}$ -continuous.

Circle:



### Spline surfaces

- Interpolate or approximate a grid of 3D points P<sub>i,i</sub>
- Spline surfaces are constructed by tensor product of spline curves:

$$S(t,t') = \sum_{i=0}^{n} \sum_{j=0}^{m} F_{i,j}(t,t') P_{i,j}$$

- If F<sub>i,j</sub>(t, t') = F<sub>i</sub>(t)F<sub>j</sub>(t'), then isocurves (t = cst or t' = cst) are spline curves
- Same properties as spline curves: normality, regularity, locality, continuity between patches, ...



Mathematical tools 1 - Session 2

Splines: a gallery

## See you next week

# The end !

Mathematical tools 1 - Session 2

・ロト ・聞 ト ・ ヨト ・ ヨト ・ ヨー

Wavelets and multiresolution

### Interpolation and approximation



2 Wavelets and multiresolution

Mathematical tools 1 - Session 2

▲ 돌 ▶ ▲ 돌 ▶ ...