Creating and processing 3D geometry

Marie-Paule Cani
Marie-Paule.Cani@imag.fr

Cédric Gérot
Cedric.Gerot@gipsa-lab.inpg.fr

Franck Hétéroy
Franck.Hetroy@imag.fr

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/
Planning (provisional)

Part I – Geometry representations

- **Lecture 1 – Oct 9th – FH**
 - Introduction to the lectures; point sets, meshes, discrete geometry.

- **Lecture 2 – Oct 16th – MPC**
 - Parametric curves and surfaces; subdivision surfaces.

- **Lecture 3 – Oct 23rd - MPC**
 - Implicit surfaces.
Planning (provisional)

Part II – Geometry processing

- **Lecture 4 – Nov 6th – FH**
 - Discrete differential geometry; mesh smoothing and simplification *(paper presentations)*.

- **Lecture 5 – Nov 13th - CG + FH**
 - Mesh parameterization; point set filtering and simplification.

- **Lecture 6 – Nov 20th - FH (1h30)**
 - Surface reconstruction.
Planning (provisional)

Part III – Interactive modeling

• Lecture 6 – Nov 20th – MPC (1h30)
 − Interactive modeling techniques.
• Lecture 7 – Dec 04th - MPC
 − Deformations; virtual sculpting.
• Lecture 8 – Dec 11th - MPC
 − Sketching; paper presentations.
Discrete differential geometry

- Discrete surface: not smooth
- **Assumption:**
 \[\text{mesh} = \text{piecewise linear approx. of a (real) smooth surface} \]
- **Goal:**
 find approximations of the differential properties of the underlying smooth surface
Applications

- Segmentation
- Remeshing
- Denoising or smoothing
- ...

Courtesy P. Alliez

Courtesy M. Meyer
Books

- **M. Botsch et al.**, “Geometric Modeling Based on Polygonal Meshes”, SIGGRAPH 2007 Course Notes, chapters 5 and 6.

 http://graphics.ethz.ch/~mbotsch/publications/sg07-course.pdf
 http://graphics.ethz.ch/~mbotsch/publications/meshcourse07_code.tgz

 http://ddg.cs.columbia.edu/
Today's planning

1. Differential geometry reminder
2. Discrete curvatures
3. Ridges and ravines
4. Other topics
5. Paper presentations
Differential geometry of a smooth curve

- γ smooth parametric curve: $\gamma : I \rightarrow \mathbb{R}^n$
- Frenet vectors/frame:

\[
e_1(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|}
\]

\[
e_j(t) = \frac{\overline{e}_j(t)}{\|\overline{e}_j(t)\|}, \quad \overline{e}_j(t) = \gamma^{(j)}(t) - \sum_{i=1}^{j-1} \langle \gamma^{(j)}(t), e_i(t) \rangle e_i(t)
\]

- The first 3 vectors are called the tangent, normal and binormal vectors
- If $n=3$, $e_3(t) = e_2(t) \times e_1(t)$
Curvature of a smooth curve

- Generalized curvature:
 \[\chi_i(t) = \frac{\langle e'_i(t), e_{i+1}(t) \rangle}{\|\gamma'(t)\|} \]

- Curvature:
 \[\kappa(t) = \chi_1(t) = \frac{\langle e'_1(t), e_2(t) \rangle}{\|\gamma'(t)\|} \]
 - Deviance from being a straight line

- Torsion:
 \[\tau(t) = \chi_2(t) = \frac{\langle e'_2(t), e_3(t) \rangle}{\|\gamma'(t)\|} \]
 - Deviance from being a plane curve
Curvature of a plane curve

- $r = \text{curvature radius at } P = \frac{1}{\kappa(P)}$
- Osculating circle
- Exercise: $\gamma(t) = (K.\cos(t), K.\sin(t))$, $r = \ ?$
Differential geometry of a smooth surface

• S smooth parametric surface:

\[x(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}, \quad (u, v) \in \mathbb{R}^2. \]

• Partial derivatives noted \(x_u \) and \(x_v \)

• Second partial derivatives noted \(x_{uu} \) etc.

• Normal vector: \(\mathbf{n} = (x_u \times x_v)/\|x_u \times x_v\| \)
Fundamental forms

- First fundamental form:

\[I = \begin{bmatrix} E & F \\ F & G \end{bmatrix} := \begin{bmatrix} x_u^T x_u & x_u^T x_v \\ x_u^T x_v & x_v^T x_v \end{bmatrix} \]

- Second fundamental form:

\[II = \begin{bmatrix} e & f \\ f & g \end{bmatrix} := \begin{bmatrix} x_{uu}^T n & x_{uv}^T n \\ x_{uv}^T n & x_{vv}^T n \end{bmatrix} \]

- Weingarten map/Shape operator:

\[W := \frac{1}{EG - F^2} \begin{bmatrix} eG - fF & fG - gF \\ fE - eF & gE - fF \end{bmatrix} \]
Curvatures

- Principal directions and principal curvatures:

\[W = \begin{bmatrix} \bar{t}_1 & \bar{t}_2 \end{bmatrix} \begin{bmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{bmatrix} \begin{bmatrix} \bar{t}_1 & \bar{t}_2 \end{bmatrix}^{-1} \]

- Mean curvature:

\[H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2}\text{trace}(W) \]

- Gaussian curvature:

\[K = \kappa_1 \kappa_2 = \text{det}(W) \]

Fig. 5. Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b) Gaussian, (c) Minimum, (d) Maximum. (Courtesy M. Meyer)
Example: torus

\[
\begin{align*}
\{ x[u, v] \\ y[u, v] \\ z[u, v] \} &= \begin{pmatrix}
\cos[u] (a + b \cos[v]) \\
(a + b \cos[v]) \sin[u] \\
b \sin[v]
\end{pmatrix}
\end{align*}
\]

Exercise:
Compute the Gaussian and mean curvatures.
Example: torus

\[K[u, v] = \frac{\cos[v]}{b (a + b \cos[v])} \]

\[H[u, v] = -\frac{a + 2b \cos[v]}{2b (a + b \cos[v])} \]
Laplace operator

- Laplace operator in an Euclidean space:
 \[\Delta f = \text{div} \nabla f = \sum_i \frac{\partial^2 f}{\partial x_i^2} \]

- Laplace-Beltrami operator for (smooth) manifold surfaces:
 \[\Delta_S f = \text{div}_S \nabla_S f \]

- Replacing f by the coordinates function:
 \[\Delta_S x = -2H n \]
1. Differential geometry reminder
2. Discrete curvatures
3. Ridges and ravines
4. Other topics
5. Paper presentations
Discrete differential geometry

- Discrete surface (here: mesh): not smooth
- **Goal:** find approximations of the differential properties of the underlying smooth surface
- **Idea:** express them as *averages* over a local neighborhood
Discrete Laplace operator

- **Taubin 1995:**

\[
\Delta_{\text{unif}} (v) := \frac{1}{|N_1(v)|} \sum_{v_i \in N_1(v)} (f(v_i) - f(v))
\]

- local geometry of the discretization (edge lengths, angles) not taken into account
- bad for non-uniform meshes

Courtesy M. Desbrun
Discrete Laplace operator

- Pinkall/Polthier 1993, Desbrun et al. 1999:

\[
\Delta_S f (v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal{N}_1(v)} (\cot \alpha_i + \cot \beta_i) (f(v_i) - f(v))
\]

\[A(v) = \text{Voronoi area}\]
Discrete curvatures

- **Mean curvature:**
 \[
 \Delta_S x = -2H n
 \]

 \[
 \implies H(v) := \frac{1}{A(v)} \sum_{v_i \in N_1(v)} (\cot \alpha_i + \cot \beta_i) \| v_i - v \|
 \]

- **Gaussian curvature:**
 \[
 K(v) = \frac{1}{A(v)} \left(2\pi - \sum_{v_i \in N_1(v)} \theta_i \right)
 \]
Discrete curvatures

Drawback: not intrinsic

- Same surface but \neq meshes
 $\Rightarrow \neq$ curvatures

- Lots of recent work
 - See Grinspun et al. SGP 2007

- My favorite: Cohen-Steiner/Morvan 2003

Courtesy M. Meyer
Cohen-Steiner's definition

\[\mathcal{T}(v) = \frac{1}{|B|} \sum_{\text{edges } e} \beta(e) \frac{|e \cap B|}{e} \bar{e} \bar{e}^t \]

curvature tensor
(eigenvectors = normal at v + principal curvatures)

\[\beta(e) = \textbf{signed} \text{ angle} \]
B = approx. geodesic disk (arbitrary size)

Courtesy P. Alliez
Results

- Based on robust math background
 - Normal cycle theory
- Convergence result w.r.t. smooth surface
- Now widely used
Today's planning

1. Differential geometry reminder
2. Discrete curvatures
3. Ridges and ravines
4. Other topics
5. Paper presentations
Definition

• Extrema of the principal curvatures along their corresponding curvature direction:

\[e_{\text{max}} = \frac{\partial k_{\text{max}}}{\partial t_{\text{max}}} \quad e_{\text{min}} = \frac{\partial k_{\text{min}}}{\partial t_{\text{min}}} \]

\[e_{\text{max}} = 0, \quad \partial e_{\text{max}}/\partial t_{\text{max}} < 0, \quad k_{\text{max}} > |k_{\text{min}}|, \quad \text{ridge} \]

\[e_{\text{min}} = 0, \quad \partial e_{\text{min}}/\partial t_{\text{min}} > 0, \quad k_{\text{min}} < -|k_{\text{max}}|, \quad \text{ravine} \]

• Ridges = (convex) crest lines

Ravines = (concave) crest lines = valleys
Example

Courtesy S. Yoshizawa
Applications

- Image analysis (medical)
- Face recognition
- Shape analysis
- Compression
- Expressive rendering

Courtesy Y. Ohtake
Computation

• Difficult because:
 – Second order differential quantities
 – Need accurate estimation of principal curvatures

• Most methods need manual filtering

Courtesy S. Yoshizawa
Existing methods

- Use of (discrete) **differential operators**
 - Noisy

- Polynomial or implicit **surface fitting**
 - Need less filtering
 - Inherent smoothing difficult to control
 - Slow
 - Local vs. global approaches
Existing methods

• See works by
 – Alexander Belyaev and co-workers
 • Yutaka Ohtake SIGGRAPH 2004
 • Shin Yoshizawa SPM 2005 + Pacific Graphics 2007
 – Frédéric Cazals and Marc Pouget
 • SGP 2003, CAGD 2006
 – Klaus Hildebrandt, Konrad Polthier and Markus Wardetzky
 • SGP 2005
Today's planning

1. Differential geometry reminder
2. Discrete curvatures
3. Ridges and ravines
4. Other topics
5. Paper presentations
Hot topics in discrete differential geometry

- **Still**: discrete Laplacian and curvatures
- **Exterior Calculus** and discrete differential forms
- **Curvature-based energies** (e.g. Willmore flow) and application to physical simulation
 - Clothes and thin plates
 - Thin shells
- **Location of streamlines and singularities**
- **Harmonic forms**
Discrete exterior calculus

- Use of (very) advanced maths to solve various geometrical problems
 - Very general but very abstract

Keyword: Mathieu Desbrun (Caltech)
Curvature-based energies

- Needed for (realistic) physical simulation of some special models
 - Clothes
 - Paper sheets
 - Flags
 - ...

- **Keyword:** Eitan Grinspun (Columbia Univ.)
Harmonic forms and singularities

- Useful to characterize a shape
 - More info than topology
 - Invariant under some deformations
 - Appl.: parameterization, remeshing

- Keywords:
 - Bruno Lévy (INRIA Lorraine)
 - Pierre Alliez (INRIA Sophia-Antipolis)

Courtesy P. Alliez
The end

• Next week:
 – Mesh parameterization (Cédric Gérot)
 – Point set filtering and simplification (Franck Hétroy)

• These slides will be available on the course's webpage:
 http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/
Today's planning

1. Differential geometry reminder
2. Discrete curvatures
3. Ridges and ravines
4. Other topics
5. Paper presentations
Mesh smoothing papers

3. S. Fleishman et al., “Bilateral Mesh Denoising”

Mesh simplification papers

1. H. Hoppe, “Progressive Meshes” => Q. Baig

2. R. Klein et al., “Mesh Reduction with Error Control” => E. Duveau & O. Nagornaya

A Signal Processing Approach to Fair Surface Design

- Gabriel Taubin (IBM research)
- Presented at SIGGRAPH 1995
- Fairing = remove rough features (denoise, smooth)
- Main idea: surface fairing ~ signal low-pass filtering
Mathematical approach

• Fourier transform ~ Laplace transform
 - Fourier: \(F(t) = \text{cst.} \int f(w) \cdot \exp(iwt) \, dw \)
 - Laplace: \(L(t) = \int f(w) \cdot \exp(-wt) \, dw \)

• FT ~ decompose the signal into a linear combination of its Laplacian eigenvectors

• Discrete case: find a equivalent to the Laplacian operator
Discrete Laplacian

- **Discrete curve:**
 \[\Delta x_i = \frac{1}{2}(x_{i-1} - x_i) + \frac{1}{2}(x_{i+1} - x_i) \]

- **Discrete surface:**
 \[\Delta x_i = \sum_{j \in i^*} w_{ij} (x_j - x_i) \quad \text{with} \quad \sum_{j \in i^*} w_{ij} = 1 \]
 - Several choices proposed for the \(w_{ij} \)

- **Low-pass filtering:**
 \[x' = f(K)x \]

K = Laplacian matrix, f = transfer function

Choice: \[f(k) = (1 - \lambda k)(1 - \mu k) \]
Fairing algorithm

- 2 steps:
 - $x'_i = x_i + \lambda \Delta x_i$ (smoothing)
 - $x'_i = x_i + \mu \Delta x_i$ (avoid shrinkage)

\[v_i = v_i + \{\lambda, \mu\} \sum_{j \in i^*} w_{ij} (v_j - v_i) \]
Results

- Very fast
 - $O(n)$ (also in memory)
 - FFT: $O(n \log n)$
- OK if the mesh is regular
- Not good if triangles have very different sizes/angles