Computer Graphics: Modeling

Franck Hétroy

Franck for the second s

Today's planning

- 1. Problem solving
 - 1 hour debate, 4x10 minutes presentation
- Pros and cons of surface representations
- Volume representations

Teams (tentative)

• Team 1:

Reynald Arnerin, Azim Azma, Laurent Belcour, Robert Conceivo Da Silva, (Adrien Gomez Espana Pecker)

• Team 2:

Nicolas Esteves, Sylvain Guglielmi, (Juan Alberto Lahera Perez,) Mohamed Riadh Trad, Xue Bing

• Team 3:

Pierre Arnaud, Varun Raj Kompella, Anja Marx, Jorge Pena, Thibault Serot

• Team 4:

Antoine Bautin, (Adrien Brilhault,) Noura Faraj, Alfonso Garcia, Stefano Sclaverano

Today's planning

- Problem solving
 - 1 hour debate, 4x10 minutes presentation
- Pros and cons of surface representations
- Volume representations

Pros and cons of surface representations

- 1. Point sets
- 2. Meshes
- 3. Parametric surfaces
- 4. Subdivision surfaces
- 5. Implicit surfaces

Point sets

- Result of scanner acquisition
- Also image-based modeling
- Main advantages:
 - "Natural" representation
 - Simple and cheap to display
- Main drawbacks:
 - No connectivity info: underlying shape = ?
 - Tedious to edit

NextEngine scanner: available here!

Too simple ?

- If nb of points too low: holes
- However:
 - Currently scanned models have up to several millions points
 - Mesh reconstruction is then time-consuming
 - Memory to store the mesh also a problem (number of faces ~ 2 x number of points)
 - Each face projects onto only one or two pixels !
- That is why surface representation by a point set is more and more used and studied

Pros and cons of surface representations

- 1. Point sets
- 2. Meshes
- 3. Parametric surfaces
- 4. Subdivision surfaces
- 5. Implicit surfaces

Meshes

- Main advantage: easy display
- Main drawback: tedious to edit
- Represent continuous piecewise linear surfaces
- Encode
 - (Approximate) geometry
 - OK for planar shapes (CAD)
 - Bad for curved shapes
 - Topology

Pros and cons of surface representations

- 1. Point sets
- 2. Meshes
- 3. Parametric surfaces
- 4. Subdivision surfaces
- 5. Implicit surfaces

Why do we need Smooth Surfaces ?

Meshes

- Explicit enumeration of faces
- Many required to be smooth!
- Smooth deformation???

Smooth surfaces

- Compact representation
- Will remain smooth
 - After zooming
 - After any deformation!

Parametric curves and surfaces

v

Defined by a parametric equation

- Curve: *C(u)*
- Surface: *S(u,v)*

Advantages

- Easy to compute point
- Easy to discretize
- Parametrization

Pros and cons of surface representations

- 1. Point sets
- 2. Meshes
- 3. Parametric surfaces
- 4. Subdivision surfaces
- 5. Implicit surfaces

Subdivision Surfaces

Benefits

- Arbitrary topology & geometry (branching)
- Approximation at several levels of detail (LODs)
- Drawback: No parameterization, some unexpected

results

Extension to multi-resolution surfaces : Based on

Pros and cons of surface representations

- 1. Point sets
- 2. Meshes
- 3. Parametric surfaces
- 4. Subdivision surfaces
- 5. Implicit surfaces

Drawbacks of Boundary Representations

- Complex shapes with splines ?
 - Branches ?
 - Arbitrary topological genus ?
 Partly solved by subdivision surfaces
- Surrounding a volume?
 - Avoid Klein bottles!
 - Prevent self-intersections
 Make them impossible?

Unwanted Bulges?

Distance surfaces

- Distance to the closest point on S_i
- The shape changes if S_i is divided
- 3D bulge at all joints!

Avoid Unwanted Bulges?

Convolution surfaces [Bloomenthal

Shoemake 91]

Integral along Si on point contri**pution** = $\int_{s \in S} f(s, p) ds$

000000000

= convolution of the skelet

Unwanded Blending problem

Primitives blend according to their distance!

Solutions to Unwanded Blending

- Idea: "blending graph" expressing the shape's topology
- [Guy Wyvill 1995]
 Find the main primitive
 Add its immediate neighbours
- [Cani Hornus 2001]

 blend until the contribution is small enough

Solutions to Unwanded Blending

- Idea: "blending graph" expressing the shape's topology
- [Angelidis Cani 2002]
 decay functions (force contributions to vanish)

21

Today's planning

- Problem solving
 - 1 hour debate, 4x10 minutes presentation
- Pros and cons of surface representations
- Volume representations

Voxels

- Volumetric representation
- (Regularly) discretize the 3D space and only keep elements inside the object
- 2D : pixel = <u>PICT</u>ure <u>EL</u>ement
- 3D : voxel = <u>VO</u>lume <u>EL</u>ement
- And also: surfel (surface), texel (texture), ...

Voxel set acquisition

- Using a function sampled on a grid
 - Numerical simulation
- Tomographic reconstruction (CT scan)
 - Medical area
- Depending on the acquisition/application, voxels contain scalar values (function, density, color, ...)

Octree

- Voxel hierarchy
- Saves memory
- Interesting for:
 - Spatial queries
 - Collision detection
 - Hidden surface removal ("view frustrum culling")

Courtesy S. Lefebvre

An introduction to discrete geometry

- Theoretical/Mathematical study of regular 2D/3D (simple) objects
 - Sampled on a grid
 - Object = point, line, plane
- How to define what is a line of voxels ?
- Adapted algorithms

Why a regular grid

- Simple topology
- Easy address to a cell: coordinates
- Easy access from a cell to its neighbors
- Physical reality (sensors)

	-1,-1	0,-1	1,-1
	-1,0		1,0
	-1,1	0,1	1,1

Cell

- Usually a convex polygon/polyhedron
- Regular
- The 3 principal cases: square/cube, hexagon/hexahedron, triangle/tetrahedron

Advantage of squares/cubes

- Square:
 - 4 neighbors
 - 1 configuration
- Triangle:
 - 3 neighbors
 - 2 configurations
- Hexagon:
 - 6 neighbors
 - 2 configurations

Adjacency on a voxel grid

- (Combinatorial) Def.:
 - 6-neighbors = voxels that share a face
 - 18-neighbors = voxels that share a edge
 - 26-neighbors = voxels that share a vertex

Adjacency on a voxel grid

- (Topological) Def.:
 - 2-neighbors = voxels that share a face
 - 1-neighbors = voxels that share a edge
 - 0-neighbors = voxels that share a vertex

Discrete object boundary

Problem with discrete objects: their boundary is not obvious

Inside or outside ?

One or two components ?

Problem

- Jordan's theorem: every smooth (n-1)manifold in Rⁿ disjoints space into two connected domains (the inside and the outside); it is the common boundary of these domains
- Corollary: impossible to find a path from inside to outside
- Need to define the right adjacency !

Adjacency couple

• Need to define one connexity for the (inside) object, and one for the outside

• Exercise: possible couples?

Adjacency couple

• Need to define one connexity for the (inside) object, and one for the outside

 Possible couples: (6, 18), (6, 26), (18, 6) and (26, 6)

• Def.: connected set of cell faces between a cell inside the object and a cell outside

- Coherent with Jordan; depends on the chosen adjacency
- Contour of a volume = surface (to display)

Discrete geometry

This part was inspired by a course given by David Coeurjolly and Isabelle Sivignon (CNRS researchers, LIRIS, Lyon)

Tetrahedra

Not talked about:

volume modeling with tetrahedra ("tets")

=> finite elements

Courtesy S.Barbier