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Abstract
Rivers are a part of many real-time graphics appli-
cations such as games and simulators. Stationary
shockwaves are seen near obstacles in real rivers,
as in Figure 1. These local surface phenomena are
omitted by most existing methods for simulating
rivers in real-time. Those that include them use
CPU-based methods for computing velocity fields
and generating surface details, limiting their scala-
bility and applicable rendering techniques. Accu-
rately representing surface details such as shock-
waves contributes to making the scene more believ-
able and rich. Our focus is on phenomena that oc-
cur in non-turbulent rivers or brooks. We provide a
method to simulate them in real-time on a GPU.

1 Introduction
Many applications in the field of computer graphics require
the representation of large explorable natural scenes. Many
techniques exist to accurately reproduce the general aspect of
water, its interaction with light, and to capture its movement.
However most techniques used to represent water flows fail to
represent certain types of phenomena that affect the water’s
surface. In most applications we usually see either waves
without flow (for oceans and lakes), or flow in rivers with
some drawbacks like water passing through obstacles, and not
interacting with them. When attempting a realistic depiction
of natural phenomena, any unnatural behaviour will stand out
to the viewer. Given that these effects are part of our land-
scape, taking them into account will create a more plausible
scene.
Some local surface modifications could be manually captured
with the help of artists, however this is time consuming and
not necessarily physically accurate. More realistic fluids are
often animated with the help of physics simulations, using
methods such as those described in part V of [Nguyen, 2007].
Fluid simulations remain computationally heavy workloads
even if accelerated on a GPU, especially if performed in the
3D case where real-time framerates can only be achieved with

Figure 1: Reference images for stationary shockwaves. Left:flow
from left to right. Right: flow from top to bottom. The elements of
the stationary shockwave are highlighted. Red: primary (gravity)
wave. Blue: resulting (capillary) waves.

very small simulation domains, or by reducing details.
Computing physically plausible 2D velocity fields in real-
time at fine resolution is now achievable, and would yield a
more lively and realistic water flow taking obstacles into ac-
count.
A few works have studied the simulation of local surface phe-
nomena, with some remaining limitations related to precom-
putation of static velocity fields and mesh-based surface rep-
resentations which are detailed in section 2.2. Alternatives
to mesh-based techniques exist, such as computing per-pixel
surface normals in order to apply techniques reviewed in sec-
tion 2.3. In this paper, we focus on the case of shallow water,
with calm rivers or brooks. We base ourselves on models and
methods from previous works [Neyret and Praizelin, 2001]
and [Yu et al., 2011] to propose a meshless GPU-based ap-
proach for simulating surface details from a dynamic 2D ve-
locity field.

2 Related Work
2.1 Water simulations from 3D flow
Physics-based approaches for simulating bodies of water have
become more popular. Many methods to perform full 3D
fluid simulations exist, for example using Solid Particle Hy-
drodynamics [Kipfer and Westermann, ] or 3D Navier-Stokes
equations [Takahashi et al., 2003]. The performance of these
methods depends heavily on the resolution of the simulation
grid. The animation of rivers with changing viewpoints re-
quires handling both small details at small viewing distances,



Figure 2: Results from previous works. Left: front and rear shock-
waves drawn from [Neyret and Praizelin, 2001] Right: basic surface
rendering from citevecsim.

and large amounts of water at large viewing distances. Using
such methods to solve our problem would require a precision
in the order of millimeters, making real-time performance im-
possible. Additionally, complex phenomena such as surface
tension also play a role in the appearance of surface details
at such a small scale, and taking this into account would lead
to an even heavier workload. Additionally, simulation of the
non-visible parts of the fluid are not useful for our purposes,
and only serve to waste resources.

2.2 Surface simulation from 2D flow
Very few works have attempted to reproduce all of the surface
details we are interested in. Here we present two previous
works that model stationary shockwaves caused by obstacles.
A procedural method is proposed in [Neyret and Praizelin,
2001] to generate the surface details we seek to represent.
They suggest that those details’ visual manifestations are lo-
cal wave phenomena that mostly affect the surface of the
river, despite their complex underlying causes. Their method
does not rely on a 3D simulation, requiring only a static 2D
velocity field. Based on shallow water and wave physics,
they derived simple criteria to pinpoint feature occurrences,
and describe their geometric properties. Interactions between
floating objects and features are also handled. The main
drawback is that their method does not include rendering of
the water surface.
A later work [Yu et al., 2011] used the former as a base,
adding methods to render the surface details. Their method
allows a convincing rendering for the targeted type of flow.
This is achieved by representing the waves with triangle
meshes that are stitched together with the original water
mesh, enabling a classical rendering pipeline to be applied.
While mesh representations are widely used in computer
graphics, their use for representing intricate surface details
poses several problems. Heavy computation is needed to de-
termine intersections of meshes for overlapping features, and
doing this for each frame quickly leads to performance issues.
Adapting the meshes for efficient rendering at variable view-
ing distances and angles is also a complex task.
Both methods employ static precomputed velocity fields as
their base. Computing the field and storing it uses a lot of
time and memory resources, as well as limiting the realism of
the water flow.

Figure 3: Stationary shockwaves (blue curves) and their start
points (black), isoFr=1 curve (grey lines), subcritical Fr < 1 areas
(dark blue).

2.3 Meshless surface rendering
The small scale surface details we aim to simulate are mostly
visible due to the way they deform light by reflecting and re-
fracting it. These properties can be captured by using the sur-
face’s normal vectors. These are fed into illumination models
such as the Blinn-Phong model [Blinn, 1977] for opaque and
diffuse objects which can be augmented to handle refractions
[Rodgman and Chen, 2001].

3 Background
In this section we review in more detail the necessary the-
ory and methods from previous works [Neyret and Praizelin,
2001] and [Yu et al., 2011].

3.1 Froude Number and shockwave origin
The Froude number is used to describe the characteristics of
a water flow, much like the Mach number for air. It is written
as Fr = ‖~v‖

c with ~v the local flow velocity, and c the wave
propagation speed. In our case of shallow water, we have
c =

√
gh with g gravitational acceleration, and h the local

water depth. Fr > 1 and Fr < 1 describe supercritical and
subcritical flows respectively and Fr = 1 characterizes the
isoFr=1 line. The physical model established in [Neyret and
Praizelin, 2001] assumes that a stationary shockwave origi-
nates at the point where the local flow velocity is orthogonal
to the isoFr=1 line.
They compute start points for each frame by iterating over
terrain and obstacle boundary points until finding the end of a
isoFr=1 line. The isoFr=1 line is then constructed as a list of



points, which they iterate over. A point is a startpoint if ~vn ·~t
and ~vn+1 · ~t have opposite signs, where ~vn is the velocity at
the considered point, and ~vn+1 is the velocity at the next point
along the velocity isovalue curve.
A simplified approach is employed in [Yu et al., 2011] by pre-
computing the start point and moving it relative to its original
position at each frame, based on the local change in velocity.

3.2 Shockwave shape
The general shape of the shockwave caused by obstacles in
a river can be compared to the mach cone observed when a
flying object breaks the sound barrier. The main difference
is in the fact that the fluid’s velocity varies along the wave.
[Neyret and Praizelin, 2001] conclude that the wave crest lies
at an angle α = arcsin ( c

‖~v‖ ) relative to the local flow veloc-
ity ~v. Their method to represent shockwave crests is to use
a list of line segments, with each segment lying at an angle
α to the flow velocity ~v at its upstream point. The length of
the segment is a fraction of ‖~v‖. Figure ?? shows shockwave
crests constructed from user-placed start points.
The waves such as those in Figure 1 consist of a larger grav-
itational wave in front of which are several smaller capillary
waves or ripples. To capture the detailed shape of the shock-
wave, [Yu et al., 2011] proposes a wave profile derived from
wave theory. It gives wave height as z(d) = zg(d) + zc(d)
where d is the distance to the wave crest, and zg and zc de-
note contributions from the gravity and capillary waves re-
spectively. AnyC2 wave profile can be specified by the artist,
and they provide an example profile.

4 Our work
Our aim is to adapt the methods from previous works so that
all computation is done on the GPU. We aim to avoid the use
of meshes, and to allow integration of dynamically computed
2D velocity fields.

4.1 Motivation
Precomputing the base flow velocity limits the scalability of
the previous works. It also limits the kinds of rivers that can
be represented by their methods. We also wish to avoid the
mesh-based representation of [Yu et al., 2011].
Performing all computation on the GPU allows for different
workflows for surface detail generation and representation,
as well as velocity field computation. GPU computation of
surface details and features allows us to compute per-pixel
surface information, most notably normals. Moving these
computations to the GPU also allows us to use it to compute
the velocity field without costly CPU-GPU communication.
GPU computation of the velocity field can allow use of a
dynamic fluid solver to add more realism to the flow.

4.2 Method
Our method relies on building a heightmap to represent the
river surface. The river is represented in a 2D grid, aligned
with the river’s surface. Using the velocity field, we identify
areas affected by stationary shockwaves. We compute their
effect on local water height to construct the heightmap of

Figure 4: Image rendered by our simulator, with a 100 region grid
overlay in yellow.

the river surface. From the heightmap we derive the surface
normal vectors which are used to render it.

The rest of our method assumes velocity values are
available at each frame, for each cell of the simulation grid,
and does not depend on the exact method used to compute
them. We also assume a description of the river banks and
obstacles as input.

To locate the areas affected by the shockwaves, we first
must find the shockwave starting points. The simplifications
made in [Yu et al., 2011] may result in inaccuracies in the
position of the shockwave, especially if combined with a
more complex and changing velocity field. We suggest to
compute the start point criterion at each frame, for every
cell representing water, using the same orthogonality criteria
as [Neyret and Praizelin, 2001]. Given we do not construct
isoFr=1 lines, we also explicitly check if the cell satisfies
Frupstream > 1 and Frdownstream ≤ 1. On a CPU this
would require a costly iteration over the whole grid, but
exploiting the massively parallel architecture of the GPU
renders this feasible, either through CUDA style program-
ming or taking advantage of the per-fragment execution of
fragment shaders.
Once start points are marked, we construct a list of start
point coordinates to link each of them to their corresponding
stationary shockwave. We search for start points over the
entire simulation domain by dividing it into regions, each of
which is searched in parallel.

To determine the shape of the shockwave crest originating
from a given start point, we use the same method as [Neyret
and Praizelin, 2001]. Shockwaves are represented as lists
of segments whose endpoints are cells of the simulation
domain. They are constructed by computing the next
shockwave segment point’s position from the local velocity
field and previous point’s position at each frame. The
independence of shockwave list updates allows them to be
performed in parallel.

To capture the 3D shockwave geometry, we store a height
value for each cell of the grid to construct a heightmap. The



height values of cells affected by a shockwave are modified
according to the profile given in [Yu et al., 2011]. We make
one modification consisting in using the capillary part zc
only for the upstream part of the shockwave, as ripples are
normally observed in front of the shockwave as in Figure 1.
To render the surface we compute its normal vectors using
the heightmap, thus avoiding the use of meshes. For this we
use the approach proposed in [Yu et al., 2011], offsetting the
original surface normals along the direction of the normal to
the wave crest.

In order to render the scene, rendering techniques such as
those presented in section 2.3 are applied to the surface nor-
mal vectors.

4.3 Implementation Details
Our implementation [Scales and Neyret, 2018] consists
of four fragment shaders and frame buffers, with a fifth
fragment shader rendering the final output image. The
shaders were developed and run with Shadertoy, a webGL
tool allowing to share, view and program fragment shaders
in GLSL ES 3.0. We will denote them as shaders and buffers
A through D.
A fragment shader is a program executed by the GPU at each
frame, for each fragment, which in our case is equivalent
to once per pixel of the output image. A buffer stores the
output values for each execution of it’s respective fragment
shader. The inputs of the fragment shader are the fragment’s
coordinates, and the sole output is a vector of four floating
point values, stored in the shader’s attributed frame buffer.
For the final shader that generates the image, the output
corresponds to the pixel values. A fragment shader has
read-only access to all buffers.

Data structures
We have two types of data to store:

• data needed for each cell of the simulation grid (type of
terrain, velocities, height values, normals)

• data describing features (list of shockwave start points,
lists representing shockwave crests)

Given the available representations, per-cell information is
computed by fragment shaders performing the same oper-
ation for all fragments, effectively mapping the simulation
grid to output buffer, with one fragment representing one
cell. All other data is computed by a ”manager” fragment
shader (shader A) with multiple execution paths depending
on the processed fragment’s screen coordinates. Fragments
in a given region of the screen are allocated to a given task,
resulting in different areas of the output buffer being used for
different purposes.

Initialization and scene geometry
We require a description of the scene geometry, consisting of
wall positions, obstacle positions and radii, and stream values
at wall and obstacle borders. In the context of shadertoy, we
simply define scene geometry directly in shader A. In practice
this data would be uploaded from the CPU, either to uniform

variables or to a buffer. Initialization of data structures and
parameters are also performed by shader A.

Velocity Field
We will point out some necessary adaptations for using a grid-
based fluid solver, and detail the use of a functional represen-
tation of velocity.
A grid-based method allows for solving 2D Navier Stokes
equations, which can be achieved on a GPU by exploit-
ing multipass rendering (implementation example[Schuetze,
2017]). Unlike traditional Computational Fluid Dynamics
applications, the area we wish to simulate changes with the
scene, requiring the shifting of boundary conditions which
can lead to instability. Additionally, phenomena originating
outside the scene can still impact its appearance, as is the case
for a shockwave originating further upstream. For these rea-
sons, the solver grid must extend further upstream and down-
stream than the visible simulation domain. Lastly, the grid
can be refined or coarsened depending on viewing distance in
order to improve performance.
A functional method allows for velocity values to be com-
puted for any position in the simulation domain, and we will
focus on the stream function method presented in [Yu et al.,
2009]. Stream values are specified as input for terrain and ob-
stacle cells, and are interpolated to give the values at each cell
of the simulation. The velocity at each point is determined by
a finite differences operation on the stream values.
The velocity field is computed for each fragment by shader B.
A call is made to the stream function with world coordinates
(derived from the fragment coordinates), and stream values at
river banks and obstacles as inputs.

Locating waves
Shader C checks each cell of the simulation with the start
point criteria. It also computes the gradient of the velocity
field, which we use to deduce tangents to velocity isovalue
lines such as the isoFr=1 line. We require access to the cur-
rent point’s value as well as neighbouring values for velocity
and gradient which are read from buffers B and C respec-
tively. One of the output values of shader C is used to desig-
nate whether the fragment is a start point.
In order to build a list of start points in buffer A, the domain
is divided into r regions of equal size, where r is a compile-
time parameter. Shader A allocates r fragments to search the
regions, which output the coordinates of the first start point
found, creating an r by r matrix of potential start points.

Computing wave shape and profile
Shockwaves are separated into two lists representing the left
and right hand side of the wave. Shader A allocates 2 ∗ r2
lines of fragments to handle each list. The first fragment of
each list reads the output value of the region it is allocated
to, and uses it to compute the next point in the shockwave.
The remaining fragments of a given list read their preceding
fragment’s output, and compute the next shockwave point. A
noteworthy consequence of this is that it takes n frames for
a modification to propagate to showckwave segment n. This
emulates the time taken for information to propagate along
the wave crest when it is perturbed.



Figure 5: A heightmap generated by our simulator. Black areas are
the original surface height. Positive offsets in red, negative in green.

Figure 6: A normal map generated by our simulator.

Figure 7: Surface rendered by our simulator.

Heightmap construction and rendering
The heightmap is computed for each fragment by shader D.
For each fragment, we search for the closest of all shockwave
segments. If the distance to that segment is less than half the
wave width, we use it to sample the wave profile. This gives
us the height offset to apply to that fragment, which we store
as output (see Figure 5). The tangent to the wave crest is also
stored. Normals are obtained in the final Image shader by
sampling the heightmap at the next cell along the direction
orthogonal to the shockwave crest (see Figure 6). The final
Image shader computes lighting with a typical Phong illumi-
nation model in order to visualize the river surface.

5 Results and discussion
5.1 Results
The implementation of our method produces shockwaves
with similar geometric properties to those generated by
[Neyret and Praizelin, 2001], with both front and rear
shockwaves. We also go further by computing detailed
surface normals for the waves, resembling those in [Yu et al.,
2011]. A realistic rendering can be obtained from the surface
normals using known methods for rendering water surfaces,
which is outside of the scope of this work. Figures 7 and 2
show our surface and that of [Yu et al., 2011] rendered with
simple diffuse and specular lighting.

5.2 Discussion
Framerates for computing surface normals are real-time for
small resolutions and simple scenes, but this is not the case
at higher resolutions and with more complex scenes. We
suspect the main cause for this is the naı̈ve method used for
computing the nearest shockwave segment for each point.
This issue can be addressed by implementing acceleration
structures to limit the number of comparisons needed, or by
changing the method used to compute each point’s position
to the shockwaves.

One drawback of our implementation is the lack of
robustness when changing the velocity field. Shockwave
start points are still correctly identified, however the waves
construction is interrupted, leading to gaps between segments
in the waves. The order of updates of velocity, Froude
number and shockwave points may lead to waves being
terminated. Froude number values will be recomputed before
the startpoint’s position, potentially leading to the start of the
wave being in a subcritical area where it should not exist. At
the next pass, the new start point will once again be slightly
upstream of the isoFr=1 line, and the line can be generated
again. This could be improved either by limiting the speed
at which the velocity field can change, or by modifying the
order of updates.

Another drawback is the identification of start points.
Instead of a single point being marked for each theoretical
start point, multiple points are marked for each start point.
Given that we currently generate shockwaves for each start
point, this is inaccurate. Implementation of the start point



check could be improved to take the local neighbourhood
into account to avoid false positives. The marked points
are still within a limited distance of the desired location, so
alternatively we could apply an extra step to leave only one
marked point from each cluster of points.

More realistic information propagation times could be
obtained by weighting the displacement of the new point
relative to the movement of it’s predecessor with a time-
dependant coefficient.

Our method focuses on stationary shockwaves, but more
features could be taken into account using our heightmap rep-
resentation. Given the height offsets caused by each feature,
we can blend them together to obtain a single heightmap and
easily determine the resulting surface normals.

6 Conclusion and future work
In this paper we presented a real-time GPU-based method
for simulating shockwaves caused by obstacles in calm
rivers and brooks where the shallow water case applies.
Our method is more scalable than previous works, and
provides comparable results in terms of accurate feature
shapes and positions. We achieve this by combining the
feature descriptions of previous works, with a dynamically
computed velocity field. Our method is meshless, avoiding
performance issues and allowing more flexibility regarding
choices for the rendering pipeline of the water surface.
This work represents a small step in a large project to accu-
rately depict the surfaces of rivers and brooks in complex
scenes, and as such there are multiple aspects to explore. A
first future work is to simulate the other features depicted in
Figure 8. Hydraulic jumps due to discontinuities in riverbed
height or swells caused by underwater sources simply
depend on velocity and riverbed geometry. We can derive
similar criteria allowing us to mark points located at riverbed
discontinuities, or sources.
Another could be to study how to perform and distribute
computations on the GPU in a more efficient manner,
especially if more types of features are added.
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