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Figure 1: Multi-scale tone manipulation. Left: input image (courtesy of Norman Koren, www.normankoren.com). Middle: results of
(exaggerated) detail boosting at three different spatial scales. Right: final result, combining a somewhat milder detail enhancement at all
three scales. Note: all of the images in this paper are much better appreciated when viewed full size on a computer monitor.

Abstract

Many recent computational photography techniques decompose an
image into a piecewise smooth base layer, containing large scale
variations in intensity, and a residual detail layer capturing the
smaller scale details in the image. In many of these applications,
it is important to control the spatial scale of the extracted details,
and it is often desirable to manipulate details at multiple scales,
while avoiding visual artifacts.

In this paper we introduce a new way to construct edge-preserving
multi-scale image decompositions. We show that current base-
detail decomposition techniques, based on the bilateral filter, are
limited in their ability to extract detail at arbitrary scales. Instead,
we advocate the use of an alternative edge-preserving smoothing
operator, based on the weighted least squares optimization frame-
work, which is particularly well suited for progressive coarsening
of images and for multi-scale detail extraction. After describing
this operator, we show how to use it to construct edge-preserving
multi-scale decompositions, and compare it to the bilateral filter, as
well as to other schemes. Finally, we demonstrate the effectiveness
of our edge-preserving decompositions in the context of LDR and
HDR tone mapping, detail enhancement, and other applications.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.3 [Image Processing and
Computer Vision]: Enhancement—Grayscale Manipulation; I.4.9
[Image Processing and Computer Vision]: Applications;

Keywords: bilateral filter, edge-preserving smoothing, detail en-
hancement, digital darkroom, high dynamic range, image abstrac-
tion, multi-scale image decomposition, tone mapping

1 Introduction

Edge-preserving image smoothing has recently emerged as a valu-
able tool for a variety of applications in computer graphics and im-
age processing. In particular, in computational photography it is of-
ten used to decompose an image into a piecewise smooth base layer
and a detail layer. Such a decomposition may then be used for HDR
tone mapping [Tumblin and Turk 1999; Durand and Dorsey 2002],
flash/no-flash image fusion [Petschnigg et al. 2004; Eisemann and
Durand 2004], transfer of photographic look [Bae et al. 2006], im-
age editing [Oh et al. 2001; Khan et al. 2006], and for other tasks.

In many of these applications it is paramount to have control over
the spatial scale of the details captured by the detail layer. Further-
more, it is often desirable to operate on details at a variety of scales,
rather than just at a single scale. For example, in the digital dark-
room, a photographer might want to separately manipulate the tone
at several different scales, in order to add depth and increase de-
tail clarity, and the final result might combine together several such
manipulations, as demonstrated in Figure 1.

Traditionally, operating on images at multiple scales is done using
multi-scale decompositions, such as the Laplacian pyramid [Burt
and Adelson 1983]. Multi-scale decompositions were also used
for tone mapping (e.g., [Jobson et al. 1997; Pattanaik et al. 1998]).
However, such pyramids are constructed using linear filters, which
are known to produce halo artifacts near edges. These artifacts
may be reduced by using non-linear edge-preserving smoothing fil-
ters, such as anisotropic diffusion [Perona and Malik 1990], robust
smoothing [Black et al. 1998], weighted least squares [Lagendijk
et al. 1988], and the bilateral filter [Tomasi and Manduchi 1998].
Among these, the bilateral filter (BLF) has recently emerged as the
de facto tool of choice for computational photography applications.
Indeed, the BLF has several appealing characteristics [Paris 2007].
However, while this filter is well suited for noise removal and ex-
traction of detail at a fine spatial scale, we show in Section 2 that it is
less appropriate for extraction of detail at arbitrary scales, which is
necessary for construction of effective multi-scale decompositions.

In this paper, we advocate an alternative edge-preserving operator,
based on the weighted least squares (WLS) framework. This frame-
work was originally used to reduce ringing while deblurring images
in the presence of noise [Lagendijk et al. 1988], and it is closely re-
lated to biased anisotropic diffusion [Nordstrom 1989]. Recently,



this framework was employed for piecewise smooth propagation of
sparse constraints [Levin et al. 2004; Lischinski et al. 2006]. We
show that the WLS-based operator is robust and versatile, and may
be used in many of the applications that have so far been based on
the BLF, at the cost of longer computation times. We found this
operator to be particularly well-suited for progressive coarsening of
images, and for extraction of detail at various spatial scales. Thus,
we use it to construct a new kind of an edge-preserving multi-scale
image decomposition, which provides an excellent foundation for
multi-scale HDR and LDR tone mapping, detail enhancement, and
contrast manipulation.

The remainder of this paper is organized as follows. In the next sec-
tion we discuss various applications of base-detail decompositions,
explain the causes of common artifacts, and examine the charac-
teristics of the bilateral filter in this context. Next, in Section 3
we show how the WLS framework may be used to perform edge-
preserving smoothing, and describe the multi-scale decomposition
construction process. Section 4 presents a detailed comparison
between our WLS-based multi-scale decompositions with several
previous schemes, while Section 5 discusses its connections with
spatially-variant filtering and with anisotropic diffusion. Finally,
we demonstrate the utility of our decompositions in the context of
several applications.

2 Background

In computational photography, images are often decomposed into
a piecewise smooth base layer and one or more detail layers. The
base layer captures the larger scale variations in intensity, and is
typically computed by applying an edge-preserving smoothing op-
erator to the image (sometimes applied to the logarithm of the lu-
minance or to the lightness channel of the CIELAB color space).
The detail layer is then defined as the difference (or the quotient)
between the original image and the base layer. Each of the resultant
layers may be manipulated separately in various ways, depending
on the application, and possibly recombined to yield the final result.

For example, to reduce the dynamic range of an HDR image, the
base layer is typically subjected to a non-linear compressive map-
ping, and then recombined with the (possibly attenuated or boosted)
detail layers [Pattanaik et al. 1998; Tumblin and Turk 1999; Du-
rand and Dorsey 2002]. Fattal et al. [2007] employ a similar pro-
cess for shape and detail enhancement, except that their emphasis is
on boosting and/or combining together detail layers from multiple
sources, rather than on compressing the overall dynamic range.

Another example is image and video stylization and abstraction
[DeCarlo and Santella 2002; Winnemöller et al. 2006]. Here the
details are discarded, while the base layer is further processed to
achieve a stylized look. Discarding details at different spatial scales
makes it possible to retain more detail inside intended regions of in-
terest, while achieving more abstraction in the background.

Computing the base layer is an image coarsening process. The
coarsening must be done carefully in order to avoid artifacts that
might arise once the base and the detail layers are manipulated
separately and recombined. As discussed by several researchers
[Schlick 1994; Tumblin and Turk 1999; Li et al. 2005] these arti-
facts are caused by distortions introduced when the signal is fac-
tored into its base and detail components. Figure 2 (after [Tum-
blin and Turk 1999]) demonstrates that both blurring and sharp-
ening of edges in the coarsened image cause ringing in the detail
layer, which may later manifest itself as halos and gradient rever-
sals. Consequently, neither linear filtering nor hard segmentation
is well-suited for computing base-detail decompositions, and re-
searchers have turned to edge-preserving filters, which provide a
compromise between these two extremes.

Figure 2: Artifacts resulting from edge blurring (left) and edge
sharpening (right). The original signal is shown in gray, and the
coarsened signal in blue. Boosting the details (red) and recombin-
ing with the base results in halos and gradient reversals (black).

The ideal edge-preserving filter must neither blur nor sharpen the
edges that separate coarse scale image features, while smoothing
the regions between such edges. Unfortunately, such an operator
does not exist, because in general it is impossible to unambigu-
ously determine which edges should be preserved. Furthermore, in
order to produce multi-scale base-detail decompositions, the oper-
ator must allow increasingly larger image features to migrate from
the base layer to the detail layer. In other words, it must allow in-
creasingly larger regions to become increasingly smoother.

Several edge-preserving smoothing operators have been used in
computational photography over the last decade. Tumblin and
Turk [1999] pioneered their use in tone mapping, by introducing
LCIS, a variant of anisotropic diffusion [Perona and Malik 1990].
Anisotropic diffusion is capable of drastic smoothing while pre-
serving crisp edges between the smooth regions, and it has been
used for multiscale image segmentation and edge detection. How-
ever, the original Perona and Malik scheme tends to oversharpen
edges. Furthermore, it is a slowly converging non-linear iterative
process, and the piecewise smooth images are obtained by stopping
the diffusion process partway through, since it eventually converges
to a constant image. These limitations of anisotropic diffusion have
been addressed by more recent work (e.g., [Alvarez et al. 1992;
Scherzer and Weickert 2000]). We refer the reader to [Aubert and
Kornprobst 2006] for a more comprehensive exposition of state-of-
the-art PDE-based methods, and a formal analysis of their ability to
preserve edges.

Despite the recent improvements to anisotropic diffusion in the
image processing literature, most recent applications in computer
graphics and computational photography use the bilateral filter,
popularized by Tomasi and Manduchi [1998]. This is a non-linear
filter, where each pixel in the filtered result is a weighted mean of
its neighbors, with the weights decreasing both with spatial distance
and with difference in value. Formally, we have:

BLF(g)p =
1
kp

∑
q

Gσs(‖p−q‖) Gσr (‖gp−gq‖) gq (1)

kp = ∑
q

Gσs(‖p−q‖) Gσr (‖gp−gq‖) (2)

where g is an image, and the subscripts p and q indicate spatial lo-
cations of pixels. The kernel functions Gσs and Gσr are typically
Gaussians, where σs determines the spatial support, while σr con-
trols the sensitivity to edges. Although a naı̈ve implementation of
the filter is costly, several fast approximations have been proposed
[Durand and Dorsey 2002; Paris and Durand 2006; Weiss 2006;
Chen et al. 2007].

While the BLF is quite effective at smoothing small changes in in-
tensity while preserving strong edges, its ability to achieve progres-
sive coarsening is rather limited. Below, we explain these limita-
tions, using the simple synthetic example in Figure 3. The input



input image visualization

Gaussian: σs = 4 Gaussian: σs = 12

BLF: σs = 4, σr = 0.15 BLF: σs = 12, σr = 0.15

BLF: σs = 12, σr = 0.3 BLF: σs = 12, σr = 0.45

WLS: α = 1.2, λ = 0.25 WLS: α = 1.8, λ = 0.35

Figure 3: Filtering a set of noisy step edges (constant regions) with
a variety of coarsening filters.

image (top left) is roughly piecewise constant, with several step
edges of different magnitudes, and it contains noise at two different
scales. For clarity, we visualize the image intensities using a color
map (top right); we use the same color map throughout the figure.

The second row of Figure 3 shows the results of filtering the image
with a linear Gaussian filter. Using a small spatial kernel (σs) re-
moves the fine scale noise, while a larger kernel smoothes out the
larger scale noise as well. As expected, the step edges are blurred
accordingly. With edge-preserving smoothing, one hopes to pre-
serve the edges, while achieving similar degrees of smoothing in the
regions bounded by them. Indeed, applying the BLF with a small σs
(3rd row, left) manages to smooth out most of the fine scale noise,
while keeping the edges mostly sharp. Next, we attempt to smooth
out the larger scale noise by increasing only the spatial support (3rd

row, right), but with only partial success. Note how some of the fine
scale noise is reintroduced into the filtered image, particularly near
some of the edges. To understand this counter-intuitive behavior,
consider a particular pixel p, whose unfiltered value is gp. As σs is
increased, more and more distant pixels q, whose value gq is close
to gp are being averaged together, and as a result the filtered value
does not stray too far from gp. In the limit (σs → ∞), the bilateral
filter becomes a range filter. This behavior has been pointed out
already by Tomasi and Manduchi [1998].

Thus, more aggressive smoothing cannot be achieved only by in-
creasing σs, and the range support σr must be increased as well.
However, increasing σr reduces the ability of the bilateral filter to
preserve edges, and some of them become blurred, as evident from
the fourth row of Figure 3. In the limit (σr → ∞) the bilateral filter
becomes a linear Gaussian filter.

In summary, this example demonstrates that the BLF trades off its
edge-preservation abilities with its smoothing abilities. As the scale
of the extracted details increases, the BLF tends to blur over more
edges, which may produce halo artifacts. In contrast, by applying
WLS smoothing to the same signal, it is possible to achieve both
finer and coarser smoothing, while preserving the step edges, and
without introducing obvious artifacts (Figure 3, bottom row). In
Section 4 we demonstrate these differences using real images.

It is possible to achieve stronger smoothing with the BLF by apply-
ing it iteratively [Tomasi and Manduchi 1998; Winnemöller et al.
2006]. Fattal et al.[2007] did this while reducing σr at each itera-
tion. However, this process produces results resembling those that
might be obtained with mean-shift filtering [Comaniciu and Meer
2002]; it tends to oversharpen strong edges and causes small fea-
tures bounded by strong edges to persist in the coarsened images.

A number of researchers attempted to address certain shortcom-
ings of the BLF. For example, [Elad 2002; Choudhury and Tum-
blin 2003; Buades et al. 2006] extended the BLF to better handle
piecewise linear functions. While the trilateral filter of Choud-
hury and Tumblin is somewhat better at progressive coarsening,
we show in Section 4 that it tends to exhibit artifacts next to sharp
features. Durand and Dorsey [2002] describe a variant designed
specifically to avoid halos along thin, high contrast features, while
Bae et al. [2006] detect and fix reversed gradients when manip-
ulating the detail layer. However, the former approach does not
eliminate wider halos, while the latter requires solving a Poisson
equation as a postprocess.

Finally, gradient domain tone mapping methods [Fattal et al. 2002;
Mantiuk et al. 2006] attempt to avoid halos by manipulating gra-
dients. In particular, Mantiuk’s multi-resolution gradient domain
framework prevents halo artifacts by imposing constraints on con-
trast at multiple spatial frequencies, but the manipulations they
demonstrate are less extreme than the ones in this work.

3 Edge-Preserving Smoothing via WLS

In this section, we first describe an alternative edge-preserving
smoothing approach based on the WLS optimization framework,
and then show how to construct multi-scale edge-preserving de-
compositions that capture details at a variety of scales.

Edge-preserving smoothing may be viewed as a compromise be-
tween two possibly contradictory goals. Given an input image g,
we seek a new image u, which, on the one hand, is as close as
possible to g, and, at the same time, is as smooth as possible every-
where, except across significant gradients in g. Formally, this may



be expressed as seeking the minimum of

∑
p

((
up−gp

)2 +λ

(
ax,p(g)

(
∂u
∂x

)2

p
+ay,p(g)

(
∂u
∂y

)2

p

))
, (3)

where the subscript p denotes the spatial location of a pixel. The
goal of the data term (up − gp)2 is to minimize the distance be-
tween u and g, while the second (regularization) term strives to
achieve smoothness by minimizing the partial derivatives of u. The
smoothness requirement is enforced in a spatially varying manner
via the smoothness weights ax and ay, which depend on g. Finally,
λ is responsible for the balance between the two terms; increasing
the value of λ results in progressively smoother images u.

Using matrix notation we may rewrite eq. ( following quadratic
form:

(u−g)T(u−g)+λ

(
uTDT

x Ax Dx u+uTDT
y Ay Dy u

)
. (4)

Here Ax and Ay are diagonal matrices containing the smoothness
weights ax(g) and ay(g), respectively, and the matrices Dx and Dy
are discrete differentiation operators.

The vector u that minimizes eq. (4) is uniquely defined as the solu-
tion of the linear system (

I +λLg
)

u = g, (5)

where Lg = DT
x AxDx + DT

y AyDy. Modulo the differences in nota-
tion, this is exactly the linear system used in [Lischinski et al. 2006],
where it was primarily used to derive piecewise smooth adjustment
maps from a sparse set of constraints.

In our implementation, Dx and Dy are forward difference operators,
and hence DT

x and DT
y are backward difference operators, which

means that Lg is a five-point spatially inhomogeneous Laplacian
matrix. As for the smoothness weights, we define them in the same
manner as in [Lischinski et al. 2006]:

ax,p(g) =
(∣∣∣∣ ∂`

∂x
(p)
∣∣∣∣α+ ε

)−1

ay,p(g) =
(∣∣∣∣∂`

∂y
(p)
∣∣∣∣α+ ε

)−1

, (6)

where ` is the log-luminance channel of the input image g, the ex-
ponent α (typically between 1.2 and 2.0) determines the sensitivity
to the gradients of g, while ε is a small constant (typically 0.0001)
that prevents division by zero in areas where g is constant.

To complete the exposition of the WLS-based operator, let us ex-
amine the relationship between the value of the parameter λ and
the degree of smoothing. When using a linear spatially invariant
smoothing filter (e.g., a Gaussian filter), doubling the spatial sup-
port of the kernel makes the filter roughly twice narrower in the
frequency domain. We would like to understand how to achieve the
same effect by changing the value of λ .

Equation (5) tells us that u is obtained from g by applying a non-
linear operator Fλ , which depends on g:

u = Fλ (g) = (I +λLg)−1g (7)

Since this operator is spatially variant, it is hard to analyze its fre-
quency response. Therefore, as in [Fattal et al. 2007], we restrict
our analysis to regions of the image that do not contain signifi-
cant edges. Specifically, in regions where g is roughly constant, the
smoothness weights ax and ay are roughly equal, i.e., ax ≈ ay ≈ a,
and hence

Fλ (g)≈ (I +λaL)−1g (8)

where L = DT
x Dx +DT

y Dy is the ordinary (homogeneous) Laplacian
matrix. The frequency response of Fλ is then given by [Oppenheim
and Schafer 1989]

Fλ (ω) = 1/(1+aλω
2). (9)

Thus, scaling by a factor of c in the frequency domain is equivalent
to multiplying λ by a factor of c2:

Fλ (cω) = 1/(1+ac2
λω

2) = Fc2λ (ω). (10)

The same conclusion may be reached for image regions of roughly
constant slope, where each of ax and ay is constant (but not neces-
sarily equal to each other).

It should be noted that since the smoothness coefficients (6) sepa-
rate between gradients in the x and y directions, the resulting oper-
ator is not rotationally invariant, with a slight tendency to preserve
axis aligned edges more than diagonal ones. However, this did not
result in any visible artifacts in our experiments; one must also keep
in mind that the discrete representation of images on a regular grid
is rotationally variant in itself.

3.1 Multi-scale edge-preserving decompositions

Using the edge-preserving operator described above, it is easy to
construct a multi-scale edge-preserving decomposition, fashioned
after the well known Laplacian pyramid [Burt and Adelson 1983].
The decomposition consists of a coarse, piecewise smooth, version
of the image, along with a sequence of difference images, capturing
detail at progressively finer scales.

More specifically, let g denote the input image for which we would
like to construct a (k + 1)-level decomposition. Let u1, . . . ,uk de-
note progressively coarser versions of g. The coarsest of these ver-
sions, uk will serve as the base layer b, with the k detail layers
defined as

di = ui−1−ui, where i = 1, . . . ,k and u0 = g. (11)

The original image g is easily recovered from this decomposition
by simply adding up the base and the detail layers:

g = b+
k

∑
i=1

di. (12)

Note that we do not perform any downsampling of the smoothed
images ui, since they are obtained via edge-preserving smoothing
and are not band-limited in the usual sense. Thus, our multi-scale
decomposition is an over-complete description of the input image.

We have experimented with two methods of computing the pro-
gressive coarsening sequence u1, . . . ,uk. The first one is to solve
the linear system (5) k times, each time increasing the value of the
parameter λ . In other words,

ui+1 = Fciλ (g), (13)

for some initial value of λ and some factor c. A coarsening se-
quence generated in this manner and the corresponding detail lay-
ers is shown in the left column of Figure 4. We found the resulting
decompositions to be well suited for HDR compression and multi-
scale detail enhancement (using α = 1.2 to 1.4).

The second method is to apply the operator iteratively:

ui+1 = Fciλ (ui). (14)

In this method the image is repeatedly smoothed, similarly to mean-
shift filtering [Comaniciu and Meer 2002] and to the multi-scale



input image

α = 1.2, λ = 0.1 α = 1.8, λ = 0.2

α = 1.2, λ = 0.8 α = 1.8, λ = 0.8

α = 1.2, λ = 6.4 α = 1.8, λ = 3.2

Figure 4: WLS-based multi-scale decompositions. Left column:
three levels computed using eq. (13). Right column: levels com-
puted using eq. (14). The left half of each image shows the coars-
ening, while the right half visualizes the corresponding detail layer.
The spatial scale of the details increases from one level to the next.

bilateral transform [Fattal et al. 2007], and the resulting coarsened
images tend more strongly towards piecewise constant regions sep-
arated by strong edges (right column of Figure 4). We still increase
λ by a factor of c at each iteration, as this results in a more signifi-
cant increase in smoothness in each iteration. We found the iterative
scheme to be better suited for applications that discard or attenuate
some of the details, such as image abstraction (with α = 1.8 or 2.0).

4 Comparison

At this point, it is interesting to compare our WLS-based multi-
scale decompositions to several previous schemes. Recall that our
goal is to be able to extract and manipulate (e.g., enhance or sup-
press) details at a variety of spatial scales, so we must keep this
context in mind, when analyzing and comparing the alternatives.
One should also keep in mind that, in real images, it is impossi-
ble to consistently classify each edge into one of two classes (those
that should be preserved and those that should not). Thus, neither
previous schemes, nor WLS are able to produce a “perfect” edge-
preserving smoothing. Still, it is instructive to compare the manner
in which each method resolves this ambiguity.

As was shown in Section 2, in order to achieve progressive coarsen-

ing with the BLF it is necessary to increase both σs and σr. Indeed,
this strategy was used by Chen et al. [2007] to compute their bi-
lateral pyramid for progressive video abstraction. However, while
this strategy produces smoother regions, it may also cause signif-
icant blurring of strong edges. Figure 5 demonstrates this using a
1D section of an image containing a large feature in the left half of
the image, and a smaller (narrower) feature in the right half. The
blue plot curves show the result of progressively coarsening the in-
put signal. With the BLF (left plot), the edges around both the large
and the small features gradually become smoother, which generates
ringing in the corresponding detail signals (shown below in red). In
contrast, with WLS, the same edges are gradually eroded, but with-
out significantly distorting the shape of the signal. Furthermore, the
edges surrounding the smaller feature are eroded faster than those
around larger features. This causes small features to migrate to the
detail layers, without noticeable ringing, even when the surround-
ing edges are strong.

Another progressive coarsening strategy [Fattal et al. 2007], is to
obtain each image in the sequence by applying BLF to the previous
image. The range parameter σr is reduced at each iteration to en-
sure that edges which were preserved in the previous level would re-
main preserved in the next one. This strategy is demonstrated in the
rightmost plot of Figure 5. While it avoids smoothing strong edges,
some small regions (surrounded by edges that were preserved in the
finer levels) might never migrate to any of the detail layers. Conse-
quently, detail layer manipulation is unable to remove, suppress, or
emphasize such detail. Another problem is the oversharpening of
edges, which might lead to thin gradient reversal artifacts (note the
thin spikes in Figure 5 and the pixel-wide halos in Figure 10).

Figure 6 demonstrates the behavior of both strategies described
above using a real image. In the bilateral pyramid (left column)
some strong edges “collapse” in the coarsening process, introduc-
ing visible ringing in the detail layer. Compare this with the base-
detail pairs in the bottom row of Figure 4, where strong edges are
more consistently preserved. As pointed out earlier, ringing in the
detail layer may cause halo artifacts in applications that manipulate
the layers and recombine them together.

For example, the tone mapping algorithm of Durand and Dorsey
[2002] sometimes produces subtle, yet visible, halos. Applying the
same algorithm using our WLS-based decomposition yields a result
without any visible halos, while preserving the fine local contrasts
just as well (Figure 7). The halo artifacts stand out much more if
the detail layer undergoes a substantial boost. An example is shown
in Figure 8.

It is also instructive to examine the decompositions produced by the
LCIS method [Tumblin and Turk 1999] and the more recent trilat-
eral filter [Choudhury and Tumblin 2003], which addresses some of
the shortcomings of both LCIS and the BLF. These decompositions
are also shown in Figure 6. In both of these approaches strong edges
collapse as the coarsening progresses, while around the remaining
strong edges there is significant ringing in the detail layer.

5 Connections with Other Operators

A number of researchers have already analyzed the mathemati-
cal relationships between various edge-preserving operators, e.g.,
[Black et al. 1998; Barash 2002; Elad 2002; Durand and Dorsey
2002; Mrázek et al. 2006]. In this section, we also discuss some of
these relationships, but focus specifically on the WLS-based opera-
tor. Our discussion is a pragmatic one, with the goal of comparing
and evaluating the alternatives in the context of the typical applica-
tions of base-detail decompositions in computational photography.

As was pointed out earlier, our edge-preserving smoothing may be
expressed as applying the operator Fλ = (I + λ Lg)−1 to the input



[Chen et al. 2007] WLS, eq. (13) [Fattal et al. 2007]

Figure 5: Progressively coarsening a signal using different edge-preserving schemes. The coarsened versions are shown superimposed on
the signal (using different shades of blue: lighter is coarser). The corresponding detail signals are plotted in shades of red below.

[Chen et al. 2007] [Fattal et al. 2007] [Tumblin and Turk 1999] [Choudhury and Tumblin 2003]

Figure 6: Coarsened images and their corresponding detail layers for several different edge-preserving filtering schemes. Coarsening
progresses from top to bottom. The bilateral filter, LCIS, and the trilateral filter exhibit ringing in the detail layer (easiest to see in the bottom
row). [Fattal et al. 2007] retains many small features even in the coarsest image, which never make their way into the detail layer.

image vector g (eq. 7). Each row of Fλ may be thought of as a
kernel (with possibly very large support) that determines the value
of the corresponding pixel in the image as a weighted combination
of other pixels in g. Similarly to the BLF, each kernel’s weights are
affected by the proximity to edges in g, and thus we can think of
our smoothing process as spatially-variant filtering.

However, applying the spatially-variant filter directly is not a vi-
able option. Explicitly forming Fλ involves matrix inversion, which
costs O(N3) operations, where N is the number of pixels. Even if
we set aside this cost, just applying Fλ might require O(N2) op-
erations. Fortunately, since Fλ is the inverse of a sparse matrix,
computing the filtered image amounts to solving the sparse linear
system (5), requiring only O(N) operations with an appropriate pre-
conditioner or a multi-grid solver. In return for this efficient solu-
tion, we give up the ability to explicitly control the precise shape
of the spatially varying kernels in Fλ , and instead control them im-
plicitly via the regularization term in eq. (3).

Solving eq. (5) using Jacobi iterations [Saad 2003] can be thought
of as anisotropic diffusion, where the stopping function between
neighboring pixels is determined once and for all at the beginning
of the process. While this may seem like a minor difference, it has
two important implications. One implication is that the iterative
process converges to a unique non-trivial solution, rather than to
a constant image; the other implication is that we can obtain this
solution efficiently, by solving a sparse linear system.

There is also a particular variant of anisotropic diffusion, known as
biased anisotropic diffusion [Nordstrom 1989], where a non-trivial

steady-state solution is ensured by “biasing” the solution towards
the input image by introducing a term g−u into the diffusion equa-
tion:

∂u
∂ t

= ∇ · (a(‖∇u‖) ·∇u)+(g−u), (15)

where a is some flux-stopping function. Again, if one uses this
scheme with a(‖∇g‖), rather than a(‖∇u‖), eq. (15) becomes linear
and its steady-state solution is exactly the result obtained by our
operator.

Similarly to anisotropic diffusion, robust estimation techniques
[Zervakis 1990; Black et al. 1998] employ an “M-function” which
depends on the unknown solution u, and plays the same role as the
regularization term in WLS. Again, the dependence on u yields a
non-linear process.

Finally, note that applying our WLS-based operator iteratively, with
the default α = 1.2 exponent in the smoothing weights of eq. (6),
is equivalent to optimizing eq. (3) with the 0.8-norm in the smooth-
ness term, using iteratively reweighted least squares [Scales and
Gersztenkorn 1988]. This norm has recently been used as a sparse
prior for derivatives of natural images (e.g., [Levin et al. 2007]).

6 Applications and Results

We have implemented a number of simple tools that use our multi-
scale edge-preserving decompositions for photographic tone ma-
nipulation, HDR tone mapping, detail enhancement, and image ab-
straction. Below, we briefly describe these tools and show some



Figure 7: Top: a tone-mapped image, taken directly from [Du-
rand and Dorsey 2002], with some halos visible around the pic-
ture frames and the light fixture. Bottom: a halo-free result with a
similar amount of local contrast may be produced using the same
tone mapping algorithm, simply by replacing BLF with WLS-based
smoothing (α = 1.2, λ = 2).

results. Note the purpose of these tools is to demonstrate in the
simplest possible way the robustness and versatility of our decom-
positions. Any of these tools could have been made much more
sophisticated, but this is outside the scope of this paper.

To solve the linear system (5) we use the multiresolution pre-
conditioned conjugate gradient solver described by Lischinski
et al. [2006]. The performance of this solver is linear in the num-
ber of pixels, requiring roughly 3.5 seconds per megapixel on a
2.2 GHz Intel Core 2 Duo. Although we currently do not have a
GPU implementation of the solver, such an implementation should
be possible; Buatois et al. [2007] describe a GPU implementation
of a more general preconditioned conjugate gradient sparse matrix
solver, and report speedups by a factor of 3.2 over a highly opti-
mized CPU implementation. It is hoped that a GPU implementa-
tion tuned to our specific linear system should achieve even more
significant speedups.

6.1 Multi-scale tone manipulation

We have implemented a simple interactive tool for manipulating the
tone and contrast of details at different scales. Given an image, we
first construct a three-level decomposition (coarse base level b and
two detail levels d1,d2) of the CIELAB lightness channel. This is
done using the first (non-iterative) construction given by eq. (13).
The user is then presented with a set of sliders for controlling the
exposure η of the base layer, as well as the boosting factors, δ0 for
the base, and δ1,δ2 for the medium and fine detail layers. The result
of the manipulation ĝ at each pixel p is then given by

ĝp = µ +S(δ0,ηbp−µ)+S(δ1, d1
p)+S(δ2, d2

p), (16)

where µ is the mean of the lightness range, and S is a sigmoid curve,
S(a,x) = 1/(1+exp(−ax)) (appropriately shifted and normalized).

Figure 8: Boosting BLF-based detail layers (top) results in arti-
facts along the high-contrast edges, which are absent when the de-
composition is WLS-based (bottom). In the right part of each im-
age medium scale details have been boosted, also resulting in halos
when done using BLF. (Input image courtesy of Norman Koren.)

The goal of this sigmoid is to avoid the hard clipping that would
otherwise occur when the detail layers are significantly boosted.
The term S(δ0,ηbp− µ) controls the exposure and contrast of the
base layer, while the remaining terms control the boosting of the
medium and fine scale details. Note that once the decomposition
has been computed, eq. (16) is evaluated in real time.

We found that this simple tool is already very effective for con-
trolling the amount of local contrast at the different scales. The
effective manipulation range is very wide: it typically takes a rather
extreme manipulation to cause artifacts to appear. Example results
are shown in Figures 1, 8, and 9. The decomposition for all these
results was constructed with the parameters α = 1.2, λ = 0.1 for
the fine scale filtering and α = 1.4, λ = 0.4 for the medium scale
filtering. We found three pyramid levels to be sufficient for the im-
ages we experimented with. Using more levels would enable finer
control, but would also require the user to manipulate more sliders.

6.2 Detail exaggeration

Our decomposition may be also used in place of the BLF-based
multi-scale decomposition used by Fattal et al. [2007] for shape
and detail enhancement from multi-light image collections. Our
experiments show that our decomposition allows one to enhance
and exaggerate details even further than with their approach, before
objectionable artifacts appear. Figure 10 (top) shows one of the re-
sults from Fattal et al. next to a similar result produced with our ap-
proach. A close examination reveals that along many of the edges,
their result exhibits one pixel wide gradient reversals, probably due
to oversharpening of these edges in the decomposition. In contrast,
the edges in our result appear much cleaner. Another comparison
is shown at the bottom of Figure 10. Here, we demonstrate that
we can generate highly exaggerated detail even from a single input
image (rather than three multi-light images used by Fattal et al.).



input image coarse scale boosting medium scale boosting fine scale boosting combined result
Figure 9: Multiscale tone manipulation with our tool. The boosting of the individual scales is intentionally exaggerated.

WLS: increased detail visibility LCIS [Reinhard et al. 2002] WLS: a photographic look

Figure 11: HDR tone mapping with our tool. Saturation and exposure were manually adjusted in the WLS results in order to match the
overall appearance of the other two images. (HDR image c© Industrial Light & Magic. All rights reserved.)

6.3 HDR tone mapping

Our decompositions are easily harnessed to perform detail preserv-
ing compression of HDR images. For example, we can simply re-
place the BLF in the tone mapping algorithm of Durand and Dorsey,
with WLS-based smoothing and avoid the mild halo artifacts that
are sometimes visible in their results (Figure 8).

Another option we experimented with is to use the tone mapping
algorithm proposed by Tumblin and Turk [1999], but replace their
LCIS-based multi-scale decomposition with our WLS-based de-
composition. Specifically, we compute a 4-level decomposition
(one coarse base layer and three detail layers) of the log-luminance
channel, multiply each level by some scaling factor, and reconstruct
a new log-luminance channel.

Figure 11 shows two tonemapped results that were produced in this
manner. In the leftmost image, our goal was to achieve a rather flat
image with exaggerated local contrasts (similar, but more extreme
than the typical result produced with LCIS on this image). This
was achieved by strongly compressing the base, and boosting the
fine scale detail layer. In the rightmost image, we pursued a more
photographic look but with more depth in the highlights than what
is possible with Reinhard’s operator [2002]. We achieved this result
by using less compression of the base and moderate boosting of the
coarser detail layers.

6.4 Progressive image abstraction

Our WLS-based operator can be used in many other applications
that utilize an edge-preserving filter. For example, Winnemöler
et al. [Winnemöller et al. 2006] and Chen et al. [2007] use the
BLF for image and video abstraction. Using our multi-scale de-
composition (the iterative version of eq. (14)) produces the results
shown in Figure 12. In this application, the detail layers are attenu-

ated, rather than boosted, to achieve a stylized abstract look. Using
progressively coarser decomposition levels increases the degree of
abstraction in the resulting image. These abstractions can also be
combined together in a spatially varying manner to provide more
detail in areas of interest. We do this with an interactive painting
interface; a more automated mechanism is described in [Chen et al.
2007]. The images are overlaid with edges extracted from the ap-
propriate detail layers.

7 Conclusions

Multi-scale contrast manipulation is a valuable digital darkroom
technique. Currently it is possible to sharpen images (which may
be viewed as increasing the local contrast of the finest scale details),
as well as to adjust the global contrast. However, adjusting the local
contrast for scales in between these two extremes is typically done
with unsharp masking, which is prone to halos. The multi-scale
edge-preserving decompositions we have introduced in this paper
are intended to fill this gap.

Our decompositions are based on a weighted least squares formula-
tion, which, as we have demonstrated, does not suffer from some of
the drawbacks of bilateral filtering and other previous approaches.
In particular, WLS allows small features to gracefully fade in mag-
nitude, so that they do not persist into coarse levels, but without
introducing significant blurring, which can result in halos when dif-
ferences are magnified. We have also shown how the WLS formula-
tion is related to other edge-preserving schemes, such as anisotropic
diffusion and iterated BLF. Our results on a variety of applications,
including tone mapping, contrast manipulation, and image abstrac-
tion, show that our approach is robust and versatile.

In future work we would like to investigate more sophisticated
schemes for determining the smoothness coefficients for the WLS
formulation in order to further improve the ability to preserve edges



input image

medium: α = 2.0, λ = 0.2

fine: α = 2.0, λ = 0.05

coarse: α = 2.0, λ = 0.8 combined result

Figure 12: Progressive image abstractions computed using our multi-scale decomposition.

Figure 10: Multi-scale detail enhancement of Fattal et al. [2007]
(left) compared to results produced with our decomposition (right).
We are able to achieve more aggressive detail enhancement and
exaggeration, while avoiding artifacts.

and extract details. Ultimately, we would like to use our decompo-
sitions as a basis for a more sophisticated and more automated tool
— a single click (or single slider) solution for image enhancement.

Another important issue that must be tackled is better handling of

color. Our multi-scale tone manipulation tool currently operates on
the CIELAB lightness channel, and we have observed that strong
manipulations result in significant changes in the perceived color.
While manually adjusting the saturation alleviates the problem, a
more principled solution is needed.
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